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Chapter 1

Executive Summary

1.1 Goals, achievements, and potentials

1.1.1 Goals and problems

The goal was/is to show, as a kind of Turing Test, how good the machine
�understands" ongoing group discussions, the interest of the group, and how
well it can participate. There are a number of related problems that we had to
solve.

Ethical problem: For proper evaluation, we should not uncover that the par-
ticipant is a machine. We decided to resolve this by restricting the machine
to asking questions about news that could be interesting to a community.
For example, by using analogies, datamining can discover that an earth-
quake has long lasting e�ects if the road system is poor and can ask about
the quality of road system, how good it is and how much it was distorted,
and can bring related news for human expert evaluations.

Community problem: In order to show the capabilities of present day ma-
chine learning techniques and natural language processing methods, we
needed a relatively narrow topic domain and a well de�ned community

Statistical problem: We needed a large a quickly developing database.

Problem of contributing: Our original idea that we would contribute in
blogspace was inappropriate for contributing: blogspace is not for active
discussions. Twitter was suggested, but it has the same problem. These
are all passive options, where either somebody's blog is to be commented,
or an own blog is to be created that can gain visibility and reactions. The
ideal case that we �nally discovered is to contribute and serve to forums.
It is, however, harder, since forum texts are highly imprecise, are very
short, use slang, topic related TLAs, and unimportant, topic irrelevant
text fragments.
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1.1.2 Achievements

We found that the number of scienti�c blogs is small. We decided to move
from scienti�c blogs to blogs on movies, although they are harder, but they solve
the community problem. We had to scale up our original crawler architecture to
this huge database, collected and analyzed blogs. Now, we learned the problem
of contributing, since in this �eld competition between bloggers is huge. This
was the time when we decided to turn to forums. Here, we had to solve the
sense disambiguation problem of unknown words. Our progress enables us to
contribute to forums. However, we need permission from the owner of the
forum. We started negotiations with Sanoma (http://www.sanomamedia.hu/)
who are (rightly) asking for proofs on historical data. We transferred our method
from English to Hungarian, collected, processed, and evaluated the Hungarian
database, including Wikipedia in Hungarian and we are proceeding along this
new route. We are expecting to start a demo next year.

1.1.3 Outlook

We knew and emphasized in our proposal that testing the technology needs
human experts, the collection of devoted experts is impossible or costly, so we
have to contribute to human communities. The original idea of contributing
to blogspace had several �aws that we had to �x. The present route needs
additional work, but it is very promising.

We found that there are a number of potential applications, including intel-
ligent portals, intelligent user manuals, everything where the term �frequently
asked questions" is appropriate and where context based inference or analogy
discovery are necessary or helpful.

1.2 Progress in this semester

In this semester, we have made progress in the following areas:

• We introduced Structured Sparse Coding to interpret unknown
words. We distinguish two types of unknown words: words whose sur-
face form is corrupted, but the concept they denote is known, and novel
words that are completely unknown. Novel words are interpreted as a
combination of related concepts by exploiting the distributional hypothe-
sis, according to which words that occur in the same contexts have similar
meanings. We introduce regularization that induces structured sparsity
in order to exploit this hypothesis and diminish the e�ect of accidental
similarities.

• We negotiated with Sanoma. They are interested in our methods since we
� in principle � can support their communities and save those communities
from moving to FaceBook. We have moved technology components from
English to Hungarian, have accomplished most of the necessary changes,
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including the sense disambiguation of unknown words. We are working on
quality measures that can prove to Sanoma that the technology will serve
their communities.

1.3 Progress in the preceding semesters

In this section, we describe the four principal research directions throughout
the project, and the progress achieved in the preceding semesters. The sections
that describe detailed results are referenced.

1. Collecting relevant information: The main challenge of the project
at the beginning was the lack of domain-speci�c quality corpora. At �rst
we discovered the most relevant blogs in the domain manually, and down-
loaded them periodically with an automated software tool we developed
(Sec. 4.1). This was quickly proven to be inadequate because (i) only a
relatively small number of documents could be collected and (ii) not all of
the documents were domain-speci�c. To address these problems, a novel
type of web crawler was created (Sec. 4.2) that is capable of reliably col-
lecting millions of domain-speci�c documents. The system was extended
with the capability to identify the de�nitive websites in a domain based
on links (Sec. 4.3), and also on content (Sec. 4.4).

2. Interpreting text: Interpreting text fragments has been the main goal of
the project from the beginning. Given a suitable, automatically generated
representation of text, the other goals, such as novelty detection, and
measuring the spreading of information become much easier to reach. Two
approaches were proposed:

(a) word graphs: In a word graph G = (V,E), the nodes v ∈ V are
words, and the edges e ∈ E are relations between the words. We
have extracted various relations from text (Sec. 5.1) such as mor-
phological, syntactic and semantic relations. Di�usion was success-
fully utilized on these graphs to yield a keyword extraction algorithm
with better than state-of-the-art performance (Sec. 5.2). Information
spreading was detected by �nding clusters of similar documents in a
corpus (Sec. 5.3). To measure document similarity, various Bag of
Words (the cosine, Dice and Jaccard similarity measures) and word
graph based (graph kernels) similarity measures were used. For clus-
tering, we used the Clique Finder algorithm, and our own heuristic
method. Background knowledge was added by extending the word
graphs with synonyms of the word nodes generated from the British
National Corpus (Sec. 5.4). The results were promising, however, the
algorithms did not scale well to our needs. We turned towards sparse
coding and dictionary learning algorithms that, in addition of scal-
ing much better, allowed us to generate more useful and meaningful
representations. Our experience with word graphs was utilized in the
construction of the crawler and detection of in�uential blogs.
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(b) topics: Text fragments can be interpreted as a mixture of topics.
The content of each text fragment is represented as a linear com-
bination of topics learned from a corpus. This representation has
several advantages over word graphs: (i) it is more intuitive, (ii) the
algorithms are much faster and scale better (iii) detecting spreading
of information and novelty is straightforward (i.e., two documents
are similar if they are described by the same topics; novel documents
cannot be described well by existing topics). The topics are mined
from a corpus by dictionary learning, and the representation is com-
puted by sparse coding (Sec. 5.5). The topics can be embedded into a
topography (Sec. 5.6) where similar topics are close to each other. In-
terpreting words and text fragments converge nicely in topography of
sense-topics (Sec. 5.7). In this representation, both the content and
the meaning of a single document is interpreted. The topics consist
of Wikipedia senses, and each word in the document is interpreted
as a combination of these sense-topics. In preliminary experiments,
the representation was applied successfully to improve upon Explicit
Semantic Analysis.

3. Interpreting words: In order to detect information spreading between
two text fragments that share only a little content, but a lot of meaning,
interpreting the words in them is necessary. In our �rst attempt, we tried
to disambiguate each word to a single Wikipedia sense (Sec. 6.1), but
found that the connection between words and senses are not so clear-
cut. Next, we took a more �exible approach: each word is interpreted as a
combination of senses. We used Explicit Semantic Analysis and clustering
to obtain sense vectors that characterize the meaning of words. (Sec. 6.2).
A more natural approach using Sparse Coding was proposed in the 6th
semester (Sec. 6.3), and realized through algorithms based on Subspace
Pursuit and Robust Principal Component Analysis in the 7th semester
(Sec. 6.3). We found that our framework outperforms state-of-the-art
methods.

4. Scaling up the project: One of the most important questions through-
out the project was that of scale. The algorithms require vast amounts of
data (e.g., Wikipedia, domain-speci�c corpora, etc.). In order to collect
this data, we designed a novel crawler. In order to store and access this
data e�ciently, we designed (Sec. 7.1) and implemented (Sec. 7.2) a new,
general purpose software architecture built upon an Information Retrieval
system.
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Chapter 2

Interpreting unknown words

in context using Structured

Sparse Coding

2.1 Introduction

Natural languages are inherently ambiguous. One aspect of this ambiguity
is that most words can be used in di�erent word senses. A problem commonly
encountered when interpreting words in free text is that some of the words we
need to interpret are unknown.

The unknown words may be corrupted (e.g., misspelled words, blurred words
in scanned documents, errors introduced by Optical Character Recognition or
Automatic Speech Recognition), or novel. On the Web, new words are created
on a daily basis. The meaning of these new words can seldom be inferred from
their surface form (i.e., their written form in the text). Consider the meaning
of the word n00b. It is nearly impossible to infer: novice.

Novel words are unknown in a di�erent way than corrupted words. Although
their surface form may not be corrupted, the concept they denote is unknown
(e.g., there are no training examples for it). Interpreting a novel word is harder
than interpreting a known one with a corrupted surface form.

Novel words may be interpreted as a combination of word senses. For ex-
ample, the word frape means �humiliating someone on Facebook who left their
pro�le unattended�. Probably, this concept is not present in any sense inventory
at the time of writing, but it is possible to represent it as the combination of
(Facebook, Humiliation, . . . ), where each sense contributes a di�erent aspect.

It is important to note that a word is �novel� when it is novel to the algorithm.
It is very di�cult, if not impossible, to construct and use a sense inventory that
contains all the senses we might encounter in free text, even when utilizing
rich knowledge sources, such as WordNet or Wikipedia. Su�cient amount of
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training examples are even harder to obtain.
According to the distributional hypothesis, words that occur in the same

contexts tend to have similar meanings [26]. The context of a novel word will
be more similar to the contexts of words that denote related concepts than to
contexts of unrelated concepts.

Based on these observations, we propose a method to interpret unknown
words. The method does not depend on the surface form of the word interpreted,
and is capable of interpreting novel words as combinations of known concepts
by exploiting the distributional hypothesis.

We interpret a word by approximating its context with the linear combina-
tion of sense-annotated contexts (i.e., contexts that are annotated with a sense).
The interpretation of the word is the vector that contains the coe�cients of this
linear combination. Each word is interpreted as a combination of a few word
senses by adding a structured sparsity inducing regularization.

As only a few senses can be selected into the interpretation vector, the
selected senses will be related to the concept the novel word denotes when the
distributional hypothesis is true. One expects that structured sparsity protects
against selecting senses that are similar only by accident, as it enforces that
only senses that have at least several similar contexts annotated with them are
selected.

The method can be generalized, as it can process labeled text fragments as
well as sense-annotated contexts. We expect that this more general framework
has further applications. In question answering, for example, the text fragments
may be de�nitions labeled with the concept they de�ne, and questions may be
interpreted in terms of these de�nitions to �nd the answer. Topics could be
assigned to documents in a similar way.

We demonstrate the ability of the method to interpret the two type of un-
known words on two novel problems. In the �rst problem, we intend to deter-
mine the exact sense of a word whose surface form is unknown. This generalizes
the original word sense disambiguation problem since we work with a single,
large set of senses instead of a smaller distinct set for each word.

In the second problem, we interpret novel words. This problem is inspired
by context clustering, an approach to word sense induction [48]. A complete
weighted graph is constructed, where the weights represent semantic similarity,
and each node is labeled with a sense. We study the quality of the clustering
invoked by the labels.

In the next section we review related work. Our method and results are de-
scribed in Section 2.3 and 2.4, respectively. We discuss our results in Section 2.5
and conclude in Section 2.6.

2.2 Related Work

To the best of our knowledge, the problem of interpreting corrupted and
novel words has not yet been investigated in the literature. However, some sim-
ilar problems have been addressed in information retrieval and natural language
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processing. We review them below.
The problem of corrupted words has been attacked from the perspective

of information retrieval. The TREC-5 confusion track [33] studied the impact
of data corruption introduced by scanning or OCR errors on retrieval perfor-
mance. In the subsequent spoken document retrieval tracks [23] the errors were
introduced by automatic speech recognition.

Word sense disambiguation is the ability to computationally determine which
sense of a word is activated by its use in a particular context (see [48] for a
survey). The sense is selected out of a small set of candidate senses for the
word, determined by the surface form. Interpreting unknown words is not part
of this problem.

These methods can not assign a sense to a word with a corrupted surface
form, because the set of senses to choose from is not known. Novel words can not
be interpreted, as there is no corresponding word sense in the sense inventory.

We obtain the sense-tagged contexts by mining Wikipedia [44]. Similarly to
Mihalcea [45], we think of Wikipedia as a sense-tagged corpus.

Explicit Semantic Analysis [21] assigns weighted vectors of Wikipedia con-
cepts (or senses) to words. An inverted index of Wikipedia is built to map each
word to the Wikipedia articles it appears in. The words are not interpreted,
as the vector assigned to each word is the same regardless the concept it de-
notes. The vectors are used to assign a centroid-based interpretation to a text
fragment.

Jenatton et.al. [30] demonstrate an application of structured sparsity to a
natural language processing task. They apply Sparse Hierarchical Dictionary
Learning to learn hierarchies of topics from a corpora of NIPS proceedings
papers.

2.3 The method

In this section, we describe the general framework that operates with la-
beled text fragments. Then we put forth an application of this framework to
interpreting words.

Each text fragment is represented in the widely used bag of words represen-
tation as a vector v of weights assigned to words, where vi is the number of
occurrences of the ith word in the text fragment.

The text fragment x ∈ Rm is approximated linearly with the columns of a
matrix D = [d1,d2, . . . ,dn] ∈ Rm×n, where D is called the dictionary. The
columns of the dictionary contain text fragments. Each column di is labeled
with a label li ∈ L.

The interpretation vector α is obtained as the coe�cients of the linear com-
bination

x = α1d1 + α2d2 + . . .+ αndn. (2.1)

α = (α1, α2, . . . , αn)
T ∈ Rn is the interpretation vector assigned to x.

To obtain meaningful representations, it is important to represent each text
fragment as a combination of text fragments labeled with only a few labels.
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Humans prefer to express the meaning of a word, the answer to a question, or
the contents of a document as a combination of a few concepts. In most natural
language processing tasks, a sparse representation is preferred. This sparsity is
enforced by introducing a structured sparsity inducing regularization.

The structural constraint is introduced through a family of sets G = {Gl} ⊆
2{1,...,n}. There are as many sets in G as there are distinct labels in L. For
each l ∈ L, there is exactly one set Gl ∈ G, that contains the indices of all the
columns di labeled with l. G forms a partition.

The interpretation vector α for text fragment x is obtained by minimizing
the loss function

min
α

1

2
∥x−Dα∥22 + κ

[∑
l∈L

||αGl
||η2

] 1
η

(κ > 0), (2.2)

where yG denotes the vector where all the coordinates that are not in the set
G ⊆ {1, . . . , n} are set to zero.

The �rst term is the approximation error on the observed coordinates, the
second is the structured sparsity inducing regularization. Parameter κ controls
the tradeo� between the approximation error and the structured sparsity induc-
ing regularization. Parameter η can be set to 0 < η < 1 to achieve a stronger
sparsi�cation.

To avoid the overrepresentation of any label, there should be an equal num-
ber of columns in D labeled for label l ∈ L.

The interpretation vector α can be condensed to a single label (e.g., for
classi�cation) in two simple steps. First, a new vector α′ is created by sum-
ming the values in α in each group Gj . To each label l ∈ L, there is a single
corresponding coordinate in α′, the weight of that label in the representation.

α′
l =

∑
j∈Gl

αj (2.3)

In the second step, the label corresponding to the largest weight in α′ is selected.

2.3.1 Interpreting words by exploiting the distributional

hypothesis

The method is applied to interpret words by using a dictionary of contexts
annotated with senses.

The N -wide context of a word is the N non-stopword words that precede
and follow it in the text. A context usually contains 2N words, except, for
example, the context of a word in the beginning of a document. A stopword is
a common function word such as the, a, at, etc.

The columns d1,d2, . . . ,dn of the dictionary D contain sense-tagged con-
texts. di is the bag of words representation of an N -wide context of a word,
and the label li is the sense the word is annotated with. The context of the
unknown word goes into x.
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According to the distributional hypothesis, words that occur in the same
contexts tend to have similar meanings. As the context x of the unknown word
is approximated with the linear combination Dα, at least some of the columns
di that are selected (i.e. αi is nonzero) will be similar to x.

Without further constraints, a stronger statement can not be stated. Con-
sider a representation α computed by least squares. In such a dense representa-
tion, nearly every coordinate would be nonzero. Additionally, the representation
will degrade for exceptions to the distributional hypothesis, as contexts di that
are similar to x only by accident will be selected.

A (non-structured) sparsity inducing regularization ensures that only a few
coordinates in α are nonzero. In such a representation, most selected contexts
have to be similar to x. But contexts could still be selected based on acci-
dental similarity. Non-structured sparsity is not robust to the potential errors
introduced by exceptions to the distributional hypothesis.

The structured sparsity inducing regularization ensures that there will be
only a few word senses selected. A word sense l ∈ L is selected if the context
x or part of it can be approximated well linearly in the subspace determined
by the columns di labeled with l. The approximation in each subspace can be
dense, but only a few subspaces may be selected. Contexts that are similar by
accident are not selected, as they are alone in the subspace.

If the meaning of a novel word is closely related to another, known concept,
it will be represented fairly accurately, as the known concept will be selected
instead. The meaning of words that have no such closely related concepts can
be represented as a combination of less related concepts. In the worst case, at
least the broad meaning or domain of the word can be determined, provided
there are enough word senses in L.

The argument can be extended to many problems in natural language pro-
cessing, where the semantic similarity of the columns in the dictionaryD and the
text fragment x can be exploited to solve the problem. Consider, for example ,
centroid-based document classi�cation [25].

2.4 Results

The performance of the method is measured in two problems. The �rst
problem is generalized word sense disambiguation, where the surface form is
unknown. In the second problem, novel words are interpreted, whose meaning
was never encountered before.

We solve the minimization task of Eq. 2.2 by means of the well established
iterated reweighted least squares method. We perform 5 iterations. For the
details, please refer to [31].

2.4.1 The datasets

The datasets are obtained by randomly sampling Wikipedia. We con-
sider Wikipedia as a sense-annotated corpus, similarly to Mihalcea [45]. Each
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Wikipedia article, identi�ed with its unique title, describes a distinct concept or
word sense. Each hyperlink is perceived as a sense-annotated word, where the
anchor text (i.e., the word) is annotated by the title of the Wikipedia article
the link points to (i.e., the word sense). For example, the word bar is tagged
by the senses bar (law), bar (counter), bar (establishment), etc.

Each dataset consists of sense-annotated contexts
(c1, l1), (c2, l2), . . . , (cC , lC), where the context ci ∈ Rm of an anchor text is
annotated with sense li ∈ L, the target of the hyperlink.

We do not perform feature selection. However, we remove the words that
appear less than �ve times across all contexts, in order to discard mistyped
words.

A dataset is collected from Wikipedia as follows. We download Wikipedia
in XML format1. We use the English Wikipedia from February 2010. Disam-
biguation pages, and articles that are too small to be relevant (i.e., have less
than 200 non-stopwords in their texts, or less than 20 incoming and 20 outgoing
links) are discarded. In�ected words are reduced to their root forms by the
Porter Stemming Algorithm [54].

To produce a dataset, a list of anchor texts are generated that match a
number of criteria. The anchor text has to be a single word that is between 3
and 20 characters long, must consist of the letters of the English alphabet, must
be present in Wikipedia at least a hundred times, and must point to at least
two di�erent Wikipedia articles, but not to more than 20. To discard very rare
words and abbreviations, the word has to occur at least once in WordNet [46]
and at least three times in the British National Corpus [5].

A number of anchor texts are selected from this list randomly, and their
hyperlinked occurrences are collected. An N -wide context of an occurrence
constitutes a context ci annotated with the title of the article the link points
to, li.

To ensure that there is an equal number of contexts labeled with each sense
l ∈ L, all the contexts that are labeled with a sense that occurs less than d
times are discarded. Additionally, contexts are discarded until there is exactly
d contexts annotated with each sense.

2.4.2 Word sense disambiguation of words whose surface

form is unknown

This problem can be thought of as a generalized word sense disambiguation
problem. Given a context x ∈ Rm of a word, the sense l ∈ L the word is used
in should be determined without knowing its surface form. The performance of
the algorithms is measured as the accuracy of this classi�cation.

The performance of the method is compared to two state-of-the-art methods
adapted to this problem. The �rst is the LIBSVM [10] implementation of a one-
against-one multiclass support vector machine (SVM) with a linear kernel. In
a study conducted by Lee and Ng, a one-against-all multiclass SVM with a

1http://en.wikipedia.org/wiki/Wikipedia:Download
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linear kernel gave the best results when applied to the traditional Word Sense
Disambiguation problem [40]. We use the same parameter setting (C = 1).

According to [28], the one-against-one approach is superior. In some initial
experiments using a one-against-all SVM, we arrived at the same conclusion.
We only include the latter results. The SVM is trained on the columns of the
dictionary D: each column and its label (di, li) is a training example.

To assess the improvement of a structured sparsity inducing regularization,
the problem is also solved by Subspace Pursuit [15] as sparse coding problem
using the same dictionary. The representationα′ computed by Subspace Pursuit
is condensed to a single sense by a procedure adopted from [64]. For each sense
l ∈ L, we compute the residual ∥x − Dδl(α)∥2, where δl : Rn → Rn sets all
the coe�cients in α not labeled with l to zero. The sense l that minimizes this
residual is selected.

As the datasets are obtained by randomly sampling Wikipedia, it is impor-
tant to examine the algorithms on multiple datasets. We generated 10 di�erent
datasets, 5 for validation, and 5 for testing. Every experiment is run on �ve
datasets. The mean and standard deviation is reported.

There areM = 100 di�erent word senses in each dataset, and d = 50 contexts
tagged with each sense. The algorithms are evaluated on datasets of di�erent
sizes (i.e., d and M are di�erent). These datasets are created by truncating the
original datasets (i.e., randomly deleting contexts and their labels).

Strati�ed d-fold cross-validation is used on each dataset. The dataset is
partitioned into d subsets, where each subset contains exactly M contexts - one
annotated with each sense. In one iteration, one subset is used for testing, and
the other d− 1 subsets form the columns of the dictionary D.

In accord with [40], we use a fairly broad context, N = 20. In our own
experiments, it was found that a broader context improves the performance of
all three algorithms. We set η = 0.5 to achieve stronger sparsi�cation.

Before evaluating the algorithms, we study how the value of κ (see Eq. 2.2)
in�uences the results. The e�ect of κ was evaluated on datasets with d = 20
and M ∈ {20, 50, 100}. Dependence of the accuracy on κ is relatively weak: the
mean accuracy changes smoothly between 0.62 and 0.70 (std=0.02) in the range
κ ∈ [2−20, 2−1], peaking at around κ = 2−8 for d = 20,M = 50.

As M increased, the optimal value of κ = 2p decreased linearly in its expo-
nent p. The optimal values for M = 20, 50, 100 are p = -6, -8, -10, and were the
same with d = 20 and d = 50. We set the value of kappa by linearly interpolat-
ing the value of the exponent p between p = −6 for M = 10 and p = −10 for
M = 100.

The parameter K of Subspace Pursuit was tested using the same procedure.
The values K ∈ {5, 10, 20, 30, 40, 50, 80, 100} were tried. We found the perfor-
mance of the algorithm nearly identical for 40 ≤ K ≤ 100. K = 40 was chosen,
as it gave the best results.

The performance of the algorithms was evaluated on problems with a varied
number of distinct senses M ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90, 100} and d ∈
{10, 20, 30, 40, 50}. We report the two extremal cases, d = 10, and d = 50, on
Figure 2.1.
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Figure 2.1: Word sense disambiguation of words whose surface form is unknown
- results. The accuracy of the three algorithms is compared as the number of
senses M grows. Each data point is the mean of �ve experiments. The error
bars denote standard deviations.

2.4.3 Interpreting novel words

The words interpreted in this problem are unknown in two respects: their
surface form and the concept they denote is both unknown. This is simulated by
taking a number of distinct labels T ⊂ L, and using all the contexts ci labeled
with some l ∈ T as test examples. The contexts labeled with some l ∈ L \ T
constitute the dictionary D. The labels in the dictionary and the labels of the
test examples are disjoint.

The evaluation procedure is inspired by word sense induction. Word sense
induction algorithms try to automatically identify the set of senses a word can
be used in in an unsupervised manner [48]. One of the main approaches in
word sense induction is context clustering. The contexts a word occurs in are
clustered into groups, each identifying a sense of the word.

As the labels l ∈ L already determine the clusters, the performance of the
algorithms can be measured as the quality of this clustering.

A simple, complete graph G = (V,E, ω) with edge weighting ω : E → R+

is constructed, where each node v ∈ V is a test example labeled with a label
l ∈ T . The edge weighting ω is determined by computing the semantic similarity
between the representation vectors of each pair of nodes.

The vectors could be compared using a variety of similarity measures [65].
We use cosine similarity, as it is the most widely known and used. Negative
similarities are set to zero. It is computed as

sim(a,b) =
< a,b >

||a||2||b||2
. (2.4)

A partition C = {Cl} of V is de�ned by the labels l ∈ T . For each distinct
label l ∈ T there is exactly one cluster Cl that contains the nodes labeled with
l.
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Representation

Senses Bag of Words Subspace Pursuit Structured S. C.

50 0.330± 0.054 0.339± 0.093 0.354± 0.043
100 0.336± 0.055 0.410± 0.106 0.451± 0.060
200 0.341± 0.056 0.475± 0.1 0.519± 0.048

Table 2.1: Interpreting novel words - results. As the number of senses |L \ T |
that represent the meaning of the novel word grows, the sparse coding based
interpretation vectors perform signi�cantly better than the bag of words repre-
sentations of the contexts.

There are many quality indices to evaluate whether a given clustering is of
high quality [55]. We opt to use coverage [7], one of the simplest measures. Let
the weight of all intracluster edges (i.e., the edges whose endpoints are in the
same cluster) be denoted by ω(C), and the weight of intercluster edges (i.e., the
edges whose endpoints are in di�erent clusters) by ω(C). Coverage measures the
fraction of the weight of intracluster edges with respect to the total weight of
all edges:

coverage(C) = ω(C)
ω(C) + ω(C)

. (2.5)

Intuitively, the larger the value of coverage(C), the better the quality of
the clustering C. A mincut has maximum coverage. Usually, a mincut is not
considered optimal, as in many cases it separates an individual vertex from the
rest of the graph. However, as the clusters in C are �xed and of the same size,
coverage can be considered a good measure.

There are a number of qualities a clustering of high quality should possess
that are not re�ected in coverage(C). Additional measures could be introduced
(e.g., intracluster conductance), but we chose a di�erent, more straightforward
approach. To better see the structure of the graph G, it is embedded into two
dimensions with two low dimensional embedding algorithms: Multidimensional
Scaling [37] and t-Distributed Stochastic Neighbor Embedding [59].

Three datasets are used to examine the e�ect the number of senses in L \ T
has on the coverage. Each dataset has d = 20 contexts per sense, and |L \ T | =
50, 100, 200. Five sets of missing senses T are selected, with |T | = 20. Each
experiment is conducted on these �ve sets.

The method is compared to two baselines: the bag of words representation
of the contexts ci, and the representation α′ computed by Subspace Pursuit.

The following parameters were set to the same values as in the previous
problem: N = 20, η = 0.5, K = 40. Dependence of the coverage on κ is
strong: the mean coverage changes between 0.24 and 0.32 (std=0.04) in the
range κ ∈ [2−4, 2−8] peaking at around κ = 2−6 for |L \ T | = 50.

Parameter κ = 2−6 was set for |L\T | = 50, 100, and κ = 2−7 for |L\T | = 200.
In this problem, the optimal κ does not depend as strongly on M as in the �rst
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Figure 2.2: The graph G generated using the Structured Sparse Coding rep-
resentation embedded into two dimensions. The nodes in the same cluster are
marked by the same color.

problem.
Table 2.1 reports the coverage values obtained by the three representations

on the three datasets. Figure 2.2 shows the graph G generated by the Structured
Sparse Coding representation embedded into two dimensions. The nodes cluster
according to the senses they are labeled with.

2.5 Discussion

We demonstrated the ability of the method to interpret the two types of
unknown words in two problems. In the �rst problem, the methods based on
sparse coding signi�cantly outperform the Support Vector Machine when there
are only a few training examples. Structured sparse coding has the best perfor-
mance when the size of the dictionary is large. Subspace Pursuit falls behind,
possibly because it selects concepts that are accidentally similar to x (see Sec-
tion 2.3.1).

In the second problem, when the similarity scores are computed based on
interpretation vectors, the nodes naturally cluster according to the senses they
are labeled with, even though the concepts they denote are unknown to the
algorithm. Both methods based on sparse coding outperform the raw bag of
word representation of the concepts.

Structured sparse coding performs the best. As the number of senses to
represent meaning of the novel word grows, the methods perform signi�cantly
better. The results were obtained with a randomly selected set of senses L. In
real-world applications, better results could be obtained by adjusting L to �t
the problem.

To better understand how novel words are interpreted, it is helpful to take
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a look at some interpretation vectors. Table 2.2 shows four good (i.e., chosen
speci�cally for demonstration) interpretation vectors assigned to four concepts.
In the �rst interpretation vector, a broader concept, Number was selected instead
of the unavailable Prime number. The second interpretation vector contains
closely related senses to the concept. The third vector is more interesting: each
selected sense describes a di�erent aspect of the concept. Transformers are
Humanoid robots (Cyborg) that can change into vehicles (Tram), and they are
also Heroes that appear in comic books (Flash (comics)) and animated series.

Prime number Existence Transformers (toy line) Departments of France

Number Logos Humanoid Duchy of Burgundy
Karma Tram Burgundy (region)
Eternity Flash (comics) Count
Mushroom Cyborg Farm

Hero

Table 2.2: Some good interpretation vectors of novel words. Each column in
the table contains an interpretation vector. The �rst row shows the sense the
interpreted novel word was annotated with. The rows below contain the word
senses that were selected (i.e. were nonzero in the interpretation vector α).
The senses are ordered according to their aggregated (i.e., summed) weight in
descending order from top to bottom.

2.6 Conclusion

We have proposed a method based on structured sparse coding to interpret
unknown words. We distinguish two types of unknown words: words whose sur-
face form is corrupted, but the concept they denote is known, and novel words
that are completely unknown. Novel words are interpreted as a combination
of related concepts by exploiting the distributional hypothesis. The structured
sparsity inducing regularization protects against the accidental similarity of ex-
ceptions to the distributional hypothesis.

The experimental results show that the method performs well when there
are only a small number of examples available, and it can interpret novel words
even as a combination of randomly selected concepts. A generalized method
was described that works with labeled text fragments. We expect that this
generalized method has further applications in natural language processing.
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Chapter 3

Recommending relevant

information to forum users

3.1 Goals

We are currently working with Sanoma Budapest1, a leading media com-
pany in Hungary and daughter of Sanoma, which is one of the largest Eastern
European media companies. In this cooperation they provide relevant data for
us. If we succeed on those data, then �nally we will have a true testing method,
and the major bottleneck of our project will be overcome. However, the �rst
step was to redo everything in Hungarian.

Our aim is to recommend relevant news articles to forum users, based on the
context of their activity. This context is represented as a piece of text, and can
mean the contents of the forum they are currently browsing, or of the post they
are currently editing; so the task is to retrieve the most relevant news articles
for a given query text.

This feature would help users by supplying them with information, and
would also generate more tra�c for the news pages. A wide range of methods
are used to accomplish this goal.

The news articles we use are from the website hír24 2 (hír is the Hungarian
word for news). This website is a news portal with articles about a wide range
of topics, like politics, fashion and technology. For our experiments, we used
a collection of roughly 200,000 Hungarian news articles from hír24 covering a
year long timespan.

1http://www.sanomamedia.hu/sanobp_english/
2http://www.hir24.hu
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3.2 Adaptation of our software to Hungarian

In our previous work, we worked only with English texts. To work with
Hungarian texts, a number of changes had to be made in our software:

• We had to correctly handle the character encoding, because in Hungarian,
there are multiple letters which contain accents, and di�erent character
encodings represent these letters di�erently.

• We had to replace the Porter stemming algorithm with the Hungarian
Snowball stemmer3, to handle the complicated in�ections present in Hun-
garian language.

• We had to change our list of English stopwords to a Hungarian one.

• For experiments with Explicit Semantic Analysis, we had to modify our
ESA software because of the di�erences of the Hungarian Wikipedia to
its English counterpart. For example, the names of the templates which
denote disambiguation pages are di�erent in the two languages. The Hun-
garian Wikipedia was downloaded, and then processed and indexed with
our modi�ed ESA software.

We indexed the news article collection using Apache Lucene. The date of
the creation of the article was also indexed as a numeric �eld. We used a simple
BOW-based index searcher as a baseline algorithm.

3.3 Online Structured Dictionary Learning

An OSDL-based (Sec. 5.5.1) system was implemented and used to discover
the latent topics present in a news collection with n documents, and to determine
the topics of single articles.

We use the word �topic� here in a similar sense as in a generative model, but
we do not use a probabilistic interpretation: we consider a topic to be a vector
which assigns weights to words. These topics are learned to describe articles: we
want the t�df-vectors of the articles to be reconstructed by a linear combination
of a small number of topics.

The main steps of this process are the following:

1. A lexicon was compiled from the k most frequent words in the articles
not present in our stopwords list. For most experiments, we used the
k = 10, 000 most frequent non-stopwords.

2. The articles were preprocessed for OSDL. A t�df -vector was generated
from each article using the lexicon, and statistics from the collection. Each
vector was normalized according to l2 norm independently. A k× n sized
matrix X was built from these t�df-vectors as columns.

3http://snowball.tartarus.org/algorithms/hungarian/stemmer.html
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3. OSDL was used to factorize the matrix as X = DA, where D is a matrix
of size k×d, and A is a matrix of size d×n. The D matrix is the dictionary
of topics: each of the d columns corresponds to a topic. We denote the
ith column of A as αi. Thus, αi is the description of the ith article as the
combination of some topics. In our experiments, the topographies were
embedded into hexagonal grids on a torus of various sizes.

4. The components of each αi were thresholded, discretized, and indexed
along with the corresponding article.

Steps 1. and 2. are straightforward, but the later steps involve some param-
eters that must be tuned correctly for the process to produce good results.

Two parameters that are closely related and very important are the number
of topics, and κ, the approximation-regularization tradeo�. We tested with
topographies of 20 × 20 = 400, 25 × 25 = 625 and 32 × 32 = 1024 topics.
We found that a higher number of topics gives more accurate results, but the
training time (the time required to learn the D matrix) grows very sharply
when we increase the number of topics, which renders more than 1024 topics
infeasible.

The other important parameter, κ must be chosen carefully. When κ is
too low, over�tting occurs, and the matrix A will not be sparse enough: too
many topics can be active at the same time, which makes the topics to be
obscure, and unusable for information retrieval. When κ is too high, the error
of the reconstruction becomes too large: the topics do not describe the articles
properly, and the topics also become obscure. For di�erent numbers of topics,
a di�erent κ is optimal. Figure 3.1. shows some of the e�ects of changing the κ
parameter.

Based on experimentation, we chose κ to be 2−13, 2−15 and 2−17 for 400,
625 and 1024 topics, respectively. This way, we got a very good topic structure
with reasonable topics. For example, these are the �ve most in�uential words
of a topic (translated to English here): level, start, �re�ghter, �re, apartment4,
which are clearly words related to �re accidents. Another topic: infection,
disease, vaccine, epidemic, virus5. Figure 3.2. shows some topics on this to-
pography.

The vectors α are compressible: they are sparse except for noise (i.e., compo-
nents with very small but nonzero values). We �lter out this noise by threshold-
ing. We discard each component with absolute vale below some �xed threshold
θ. To determine the value of θ, we generated a histogram of the values in a
sample of 2000 α vectors (Figure 3.3.). The histogram shows an exponential
distribution on the components with weight above 0.05, so the weights below
0.05 are considered as noise. We used θ = 0.05 as threshold.

The weights in the α vectors are continuous values, to be indexed in a Lucene
text �eld. These �elds contain word-frequency pairs, and the frequency value is
an integer, so the weights had to be discretized. We followed a simple approach

4In Hungarian: emelet, keletkezett, tuzoltó, tuz, lakás
5In Hungarian: fertozés, megbetegedés, oltás, járvány, vírus
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(a) κ = 2−11 (b) κ = 2−13 (c) κ = 2−17

0 50 100 150 200 250 300 350 400
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

(d) κ = 2−11

0 50 100 150 200 250 300 350 400
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

(e) κ = 2−13

0 50 100 150 200 250 300 350 400
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

(f) κ = 2−17

Figure 3.1: The e�ect of parameter κ on the computed α. The �gures
show di�erently computed α-vectors of the same text, on the same D matrix,
with di�erent κ parameters. The Hinton-diagrams on the top show the values
of α represented in a 20× 20 topography. The graphs on the bottom show the
values of α sorted in decreasing order. κ = 2−17 is too small, the weights of
the topics are not sparse enough, and are noisy. κ = 2−11 provides few active
topics. When this parameter is used during OSDL, the topics themselves are
not intelligible, and are not useful. κ = 2−13 seems to be the optimal parameter.
For di�erent topographies, a di�erent κ is optimal.

and divided the weights into three bins, with 0.095 and 0.175 as limits. This
discretization ensured largely equal frequencies in all three bins.

3.4 Robust Principal Component Analysis

RPCA (Sec. 6.4.7) decomposes a matrix M as M = L + S where L is a
low-rank matrix and S is a sparse matrix containing noise. Applying RPCA on
a matrix, and using only the low-rank term instead of the original matrix can
be used to �lter out noise, which makes it an easier task for another algorithm
(e.g., OSDL) to learn a dictionary. We think that OSDL might greatly bene�t
from noise �ltering, because the presence of a topic does not guarantee that all
the words of the topic occur in the text; and also the occurence of a word does
not guarantee the presence of the topic where the word belongs.

To improve our results, we experimented with RPCA to reduce the amount
of noise present and also to reduce the dimensionality of the data. This can
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Figure 3.2: Topography of topics in Hungarian. This is part of a topog-
raphy that OSDL generated from the news collection. Words in a single topic
tend to be strongly related. See the text of Sec. 3.3 for the English translations
of some of the words here.

be achieved by inserting the following operations after step 2 of the process
described in Sec. 3.3.

1. The matrix X is multiplied by an r × k sized R matrix of random values
from a standard normal distribution. The new RX matrix is now dense,
which is bene�cial for RPCA.

2. RPCA is used to decompose the RX matrix to a sparse term of outliers
and a low-ranked matrix.

3. SVD is used on the low-ranked term to determine the new low-dimensional
space, and to project the low-ranked matrix L to that space. In the
following steps, the resulting matrix is used instead of X.

The results in our preliminary experiments were inconclusive. In some cases
the results were improved upon, but sometimes it had a negative e�ect. Further
investigation is needed with RPCA to examine its bene�ts in our system.

3.5 Query construction and scoring

In Lucene, documents can have multiple �elds. A �eld stores and indexes
data about a document that belong together. For example, a document may
hold a �eld for its title, another �eld for its URL, and another one for the actual
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Figure 3.3: Histogram of topic weights in the α vectors. The �gure shows
a histogram of the absolute values of every weight in a sample of 2000 α vectors.
The histogram shows an approximately exponential distribution above weight
0.05. Note that the bar below weight 0.01 is not shown because the frequency
of weights below 0.01 is vastly above the others.

contents of the article. We stored many �elds for the hír24 news articles, of
which 3 is used during searching and scoring the documents:

• Body: it contains the stemmed words of the article, along with their
frequencies (the number of times they occur in the article).

• Topics: it contains the OSDL topics of the aricle with weights greater
than a speci�c threshold. The topics are stored as words, therefore they
also have frequencies, which is their discretized weight.

• Date: the date of the creation of the article, stored as a numeric �eld.

During searching, the following are the main steps:

1. At �rst the system generates a t�df-vector from the query text with the
same lexicon and document frequency statistics as was used with the news
articles. This vector is normalized according to l2 norm.

2. Then, the α-computing step of the OSDL algorithm is run on the vector,
using the D matrix which contains all the topics that OSDL learned before
the indexing. The resulting α vector is the description of the query text
as the combination of some topics from D.

3. The components of the α are thresholded and discretized with the same
parameters as during the indexing.
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To search on the text of the articles, we select the most important words of
the query text (based on their t�df-values), and construct a Lucene query from
them. Searching based on the text body alone is our baseline algorithm. This
algorithm has the drawback that it does not �nd articles that share the same
topic as the query text, but contain di�erent words. Searching on the topics
alone would not distinguish between articles that share the same topic, but are
about slightly di�erent things. To eliminate these individual shortcomings, the
two approach is combined: the search itself is done on two �elds (body and
topics).

Lucene provides a number of ways to construct sophisticated queries that
search multiple �elds. Subqueries can either be connected as MUST clauses
(then only those articles are returned which contain the word or topic that is
in the query) or SHOULD clauses (then the speci�ed word or topic does not
have to occur in the document, but if does, the document gets a higher score).
We would like to �nd the most relevant articles even if they do not match our
criteria exactly, so we used SHOULD clauses, and found that this approach
works well.

The system we descibed so far �nds relevant articles, but an additional step
should be made to take into account the date of the article. When recom-
mending news articles, it is especially important to prefer newer articles. We
implemented a CustomScoreQuery class for Lucene which weights the original
scores according to date. Currently, it gives double score to articles that are less
than a day old, and gives standard score to articles that are a year old or older,
with linear interpolation between the two dates. Of course, as the �nal version
of the system will work with real-time news, and not a �xed archive of articles,
a more re�ned approach may be neccessary. For example, another point could
be added to the date scoring function at the point of one week before the search.

We made steps to incorporate the reconstruction error of the individual
OSDL topic (α) computations (||x − Dα||2) into the score of the hit. The
problem was that, contrary to our expectations, this error had too little bearing
on the quality of the topics found. Many times, the algorithm found topics that
we found good and useful, but the reconstruction error was high. The error
was very high overall, and varied around 0.85. This indicates that a di�erent
measure of error should be used.

3.6 Splitting the collection into news categories

OSDL has a parameter that sets the number of topics generated. After some
experimentation, we found that increasing the number of topics improves the
results, but increasing it above 32 × 32 was not feasible due to the very high
computational requirements. It was desirable that we partition the collection
in a meaningful, non-overlapping way. The other thing we found that there are
some very obvious false positive hits which needed to be eliminated.

For these reasons, we decided to treat articles that belong to di�erent news
categories (e.g., economy, technology, entertainment, world news, etc.) sepa-
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1. 18.7% domestic
2. 15.9% world
3. 13.6% celebrities
4. 13.3% science, technology, IT, cars
5. 11.3% economy, �nance
6. 9.4% accidents, crimes
7. 7.4% design, fashion
8. 7.8% entertainment, �lm, music
9. 2.6% funny

Table 3.1: Distribution of categories in the news collection. The table
shows the nine new category groups we used to split the news collection into
smaller parts. The second column shows the percentage of the news articles
falling into each category.

rately. The authors of the articles classi�ed each article into exactly one cate-
gory. There were a total of 39 categories, but many of them contained very few
articles, and there were very similar ones (such as the categories technology and
science). We dropped the smallest categories, and de�ned 9 equivalence classes
among the remaining ones. Table 3.1. shows the classes, and their size. From
now on, we use the word category for these equivalence classes. We created,
processed and indexed 9 non-overlapping collections of news articles, each from
a di�erent news category. For each category, we conducted a separate OSDL
run with 32× 32 topics, so we had a total of 9216 topics.

Of course, splitting the collection along categories introduces another prob-
lem, namely, that the system needs an additional input with the query: the
category in which it has to search. In forums, it does not pose a big problem,
because most forum threads have a clearly de�ned topic, so the category need
to be set only when a new topic is created. Moreover, most forums have a hier-
archical structure of topics, which makes the situation even better: children of
a forum topic tend to share their category with their parent.

Nevertheless, we also experimented with the automatic categorization of
articles into topics, because a fully automatic system would be much more useful,
and would also work in applications where there is no strictly de�ned forum
topic. We trained linear SVM classi�ers on the t�df-vectors of the articles. We
used linear SVM for its simplicity, speed and also its good performance in text
classi�cation tasks. We measured 75% accuracy using 10-fold crossvalidation,.

In later experiments, we augmented the vectors with additional features: an
OSDL α-computation was run for each article, for each category (regardless
of the true category of the article). The matrices D were learned beforehand
without using the test articles. 78% accuracy was reached. We also tried using
the reconstruction errors of OSDL computations, but the results did not increase
considerably. Overall, we expected a better results. The SVM-based automatic
classi�cation of forums is an even more challenging task, therefore we concluded
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that more advanced methods are needed to automatically categorize them.

3.7 Explicit Semantic Analysis

We found Explicit Semantic Analysis (Sec. 6.1.1) to be very useful in charac-
terizing a word or text fragment previously. Using ESA concept vectors instead
of simple word t�df vectors has the advantage of a higher dimensionality. Se-
mantic relatedness measures can be improved by augmenting the t�df vectors
of the texts that need to be compared [22].

Though using articles only from the correct category eliminates the most
obvious false positive hits, some can still occur. We experimented with ESA to
�lter the hits. For this, we indexed the Hungarian Wikipedia, and built an ESA
interpreter using the index.

During searching, a similarity value is computed for each hit, based on the
ESA vectors of the article and the query text. False hits tend to have clearly
lower similarities to the query text than truly relevant articles, but it is also
clear that a simple global threshold is not enough to correctly �lter out false
positive hits, because the suitable threshold varies from query to query.

We plan more experiments to �nd a method that is e�cient and works well
for all queries in reducing the number of false hits.

3.8 Implementation

We used MATLAB for the massive numerical computations on collections
of t�df-vectors prior to the indexing phase: for OSDL and RPCA.

We used Java for almost all other operations: for processing the news col-
lection and generating t�df-vectors from them; for indexing textual and OSDL
topic information and searching on them; for building ESA vectors and �lter-
ing hits based on them; and for automatic categorization of queries. For the
software to function without MATLAB once the indexing is done, we reimple-
mented in Java the parts of the OSDL and RPCA algorithms that are required
to searching. We developed a Java searching server that receives query requests
through a socket connection, searches the index, and sends the relevant articles
back through the socket.

We augmented this server application using the Apache JCS 6 (Java Caching
System) library to cache the results of searches, and a number of di�erent partial
results: the topics of t�df-vectors, the ESA-vectors of articles, etc.

We implemented a plugin for the Invision Board portal engine in PHP which
augments the forum interface with a searching option. This plugin can be used
to test our system. The PHP plugin acts like an interface, and uses the Java-
based searching server through a socket connection to recommend relevant news
articles based on the query text.

6http://commons.apache.org/jcs/
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Figure 3.4: The indexing architecture. The preprocessor component (writ-
ten in Java) represents the news collection as the X matrix, which is given to
the OSDL algorithm (written in MATLAB). The produced D matrix is used
during searching. The indexer creates a Lucene index from the preprocessed
articles and from the topics given in the A matrix.

3.9 Results

Testing of the system was done by quierying it using real-world forum entries,
and assessing the results based on human judgements. This �rst step does
not give us a precise number, only impressions. In the second step, standard
information retrieval datasets (e.g., TREC datasets) will be used to test our
system.

Using the baseline algorithm (i.e., searching only for the words that appear in
the query text) is very e�ective in itself, but only when the language of the query
text is similar to the language of the articles. In the case of our application (i.e.,
recommending news articles to forum users) this works if the users on the forum
use the language of journalists, which is usually not the case. For example, the
user writing to a forum about environmentalist issues might be interested in a
science-related news article about the loss of biodiversity, even if he or she does
not use the exact words biodiversity or environmentalism, and instead uses the
words green, kill and animal.

A related case where the baseline algorithm might fail is where the news
article is about a closely related, but slightly di�erent topic than the query text.
It might happen that the two texts do not share a single important word, but
are still closely related. For example, a user browsing articles about computer
hard drives might be interested in an article about graphics cards as well.

We use OSDL to handle this problem. Of course, for this to work without
the use of an external corpora or thesaurus, the words denoting the same topic
have to occur together in some articles. Our system is often able to cope with
situations like that, when there is enough data in the collection about the words,
and the situation is not very ambigous.

However, the system is far from perfect. There are often cases when each
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Figure 3.5: The searching architecture. Our plugin in the Invision Board
forum engine (written in PHP) takes a query text and sends it to the server
through a socket connection. The α-computing algorithm in it (which is a part
of OSDL) discovers the topics in the query text using the D matrix created
during indexing. The searcher uses the index to retrieve relevant documents
using the words and topics of the query text, and sends the results back to the
forum engine, which presents them to the user.

version gives equally bad results. Sometimes the augmented searcher gives worse
results. For example, numbers may give a separate topic in OSDL. A query
text that contains many numbers may promote that topic, so the results are
articles that contain lottery numbers. Overall, we can safely say that the OSDL-
augmented version clearly outperforms the baseline as a whole.

3.10 Future Plans

We have many plans to improve our system. Currently, we think that en-
forcing a topography on the topics gives better results, but we did not test this
hypothesis thoroughly. We also did not use the topography explicitly in the
system, though this seems feasible: topics that are close to each other tend to
be similar.

Overall, the system looks promising: our judgement is that it clearly gives
superior results compared to the simple BOW-based baseline, but further tests
on standard information retrieval datasets are required to verify this. We are
currently planning to test our system using the TREC datasets. We also would
like to compare the use of OSDL to similar, standard information retrieval
algorithms, such as Latent Semantic Indexing and Latent Dirichlet Allocation.
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Chapter 4

Progress in collecting relevant

information

4.1 Manually selected blogs

As we planned, we selected a number of blogs for experimentation in the
upcoming semester. The topic of most of these blogs is Arti�cial Intelligence,
which enables us to observe and validate the results also manually (besides cre-
ating quantitative measures of performance as well), since we have competence
in the �eld. We collected the following blogs:

• http://www.hunch.net/: a blog created by John Langford for academic
research on machine learning and learning theory. Other researchers also
send posts.

• http://www.illigal.uiuc.edu/web/blog/: Blog of the Illinois Genetic
Algorithms Laboratory (IlliGAL). IlliGAL studies evolutionary and ge-
netic algorithms.

• http://herselfsai.com/: A blog dealing with arti�cial intelligence and
brain research.

• http://medal.cs.umsl.edu/blog/: Blog of the Missouri Estimation of
Distribution Algorithms Laboratory (MEDAL) on evolutionary comput-
ing and machine learning.

• http://geneticargonaut.blogspot.com/: A blog run by Marcelo de
Brito about arti�cial intelligence, neural networks and their application.

• http://www.inma.ucl.ac.be/ francois/blog/index.php: A blog run
by Damien Francois dedicated for machine learning and arti�cial intelli-
gence. Its purpose is tho enumerate the latest techniques and devices for
the average user.
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• http://www.kurzweilai.net/: Ray Kurzweil's blog in scienti�c topics
including arti�cial intelligence.

• http://scienceblogs.com/: a collection of blogs in topics of science such
as arti�cial intelligence.

• http://blogs.nature.com/wp/nascent/: Nature's blog on web technol-
ogy and science.

• http://www.realnanotechinvestor.com/: A blog on nanotechnology.

• http://nanotechwire.com/: Weblog on the industrial applications of
nanotechnology and scienti�c research in the �eld.

• http://www.cnn.com/: CNN's weblog on general news. Included as a
basis for comparisons.

The entries in the blogs contain the date of appearance, which enables us to
track topic spreading.

We developed software to update our database of documents coming from
these blogs using RSS/Atom and crawlers, which continuously check and down-
load new content. RSS and Atom is an XML based web syndication format for
information disclosure implemented by web feeds. Basically, it allows programs
to download content in an easy way, in a structured format. Crawlers are pieces
of software that periodically check the selected blogs searching for new entries,
download the web pages and extract relevant text content throwing away un-
necessary parts such as advertisements and HTML formatting tags.

4.1.1 Wikipedia for experimentation

As an alternative for blogs, we also considered running experiments on
Wikipedia. The basic idea is that entries in Wikipedia are similar to blog
entries, and it might be useful for testing algorithms designed for measuring
document similarity. For easier experimentation, we downloaded Wikipedia to
obtain a static version of January 3, 2008. A version containing changes as well
would also be available, however, it is infeasible for us because of its enormous
size (approximately several thousands of gigabytes).

4.2 Topical web crawling in Blogspace

One of the subgoals of the Blogspace project is topical web crawling in
Blogspace. It is topical crawling, because its goal is to �nd documents or web
pages that belong to a particular topic. And the crawler operates in Blogspace,
that is, our domain of interest is the domain of web logs, or blogs.

So far our topic of interest was chie�y science blogs and news, but as we
progressed with the project, we found that there may be not enough blogs
whose topic is scienti�c research. Another problem with science is that there
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are not many people that understand it well, so the target audience for our
human-computer dialog system would be severely constrained. In light of these
developments, we decided to choose another domain that is more accessible to
the layman and more popular. We think that a perfect candidate would be
blogs about movies, because of the following reasons:

• They are perfectly accessible to anyone, no special knowledge is required
to discuss them.

• There are a lot of blogs about movies.

• It is easy to decide whether an article is about a movie or not; movies is
a well de�ned domain.

• Many people are interested in movies, the target audience of our human-
computer dialog system is large.

• The truth of a statement about movies can not be determined as eas-
ily in the movie domain as in the science domain. This means that the
generation of believable content is easier in the movie domain.

We have three goals we can solve by an e�ective topical crawler:

1. Find as many instances of a document on the blogosphere as possible

2. Find the most in�uential blogs about a topic

3. Find many relevant documents belonging to a topic

The �rst two tasks are necessary for the measurement of information di�u-
sion. If we have a piece of information (a document), we would like to know how
in�uential this piece of information turned out to be. Particularly, we would like
to know how many blogs posted about our documents (this is the �rst task) and
how in�uential these blogs are (the second task). The second task also makes
the �rst task easier, because we can start our search for the posts about our
documents from the most in�uential blogs.

In the third task the crawler collects a corpus of topical documents for our
human-computer dialog system.

We developed a crawler architecture to solve all three tasks. The architecture
is based on Heritrix, the Internet Archive's open-source, extensible, web-scale,
archival-quality web crawler. A concise summary of Heritrix can be found in
[47]. We extended the Heritrix architecture with various modules in order to
implement our focused crawler. From now on we set aside implementation
details, and describe our crawler at a higher level.

The novel ideas in our crawler are the following. Firstly, we capitalize on
the fact that most blogs are about a single topic. In other words, web pages
on a blog constitute a dense cluster of documents about the same topic. The
task of our crawler is to �nd as many such documents clusters as possible. So
the basic unit of our crawl is the blog. In contrast, traditional focused crawlers
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make their decisions at the lower webpage level. We maintain a list of blogs that
can be considered for crawling, where there is a relevance score for all the blogs.
The higher the relevance score of a blog is, the more frequently we download
pages from that blog.

Secondly, we consider our crawl as a process in time. During a crawl, there
are periods when there are many relevant blogs waiting to be downloaded, and
there are periods with only a small number of relevant blogs. If we can detect
these periods, then it makes sense to slow down our crawl when there are only
a few relevant blogs, and speed it up when there are many. The reason for this
is the assumption that relevant blogs link to other relevant blogs, and irrelevant
blogs link to irrelevant blogs. So we slow down our crawl in order to avoid
crawling irrelevant blogs.

The following section is about our crawler architecture and crawling experi-
ments.

4.2.1 The crawler architecture

The basic unit in the architecture is a blog. We identify a blog with its
unique domain name. Usually the domain name is the address of the main
page of a blog, from which the posts can be accessed. We compose a list of the
possible domain names from http://weblogs.com, as described in the previous
section. Note that although there are blogs without unique domain names, in
that case we consider all blogs under a unique domain name as a single unit,
because

• important blogs usually have a unique domain name

• if blogs share a domain name, they are usually about the same topic

At the center of the architecture is a list of active blogs, that is, the blogs
we currently crawl. In this list there are (domain name, relevance rating) pairs.
The domain name identi�es the blog, and the relevance rating represents how
close that blog is to our topic. Speci�cally, it is computed as the estimation of
the probability that a document retrieved from that blog will be relevant

relevance_rating blog =
relevant blog

all blog
(4.1)

where relevant blog denotes the number of relevant documents retrieved, and
all blog denotes all the documents retrieved from a blog. We decide whether a
document is relevant using a support vector classi�er (see Sect. 4.2.4).

Web pages from blogs that have higher relevance rating are downloaded
more frequently. A separate queue belongs to each blog that contains the URLs
waiting to be downloaded from that blog. There is a wait time associated with
each queue (or blog): the time to wait between two downloads from that queue.
This wait time depends upon the relevance rating of the blog and a parameter
(see below).
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At �rst, we initialize the list of active blogs using a list of seed blogs. We only
download pages from the list of active blogs, and we expand this list based on
the assumption that relevant blogs link to other relevant blogs. If we encounter
a new page that is not part of an active blog, we note that it was linked from our
active blogs, and count the number of times it was linked. If this count exceeds
a link count threshold, we put this blog into the list of active blogs, and start to
download it.

URL URL URL URL. . . Domain

Name

Relevance

Rating

Figure 4.1: The representation of one blog Blogs are represented with
a complex data structure. The blog is identi�ed by its domain name. The
relevance rating shows how relevant this blog is to the topic we are interested in.
The crawler retrieves web pages from this blog every wait time (in milliseconds).
The URL queue contains all the URLs we know that have not been downloaded
yet from the blog.
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Figure 4.2: The crawler architecture The basic units in the architecture are
blogs. There is a wait time and an URL queue associated to each blog. When
wait time milliseconds have elapsed since the last retrieval from the blog, an URL
is taken out of the URL queue, and handed over to the Thread Pool. A thread
in the Thread Pool takes the URL, downloads and processes it. Meanwhile, a
new wait time is computed depending on the relevance rating of the blog.
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4.2.2 The wait time as a function of the relevance rating

To de�ne the wait time between two downloads from the same blog as a
function of the relevance rating of the blog, we introduce a simple mathematical
model. First, we formalize the concept of relevance and relevance rating. For
every blog B ∈ blogs there is a probability P (d ∈ R|d ∈ B) that document
d retrieved from blog B will be in the set of relevant documents, R. We can
estimate this probability for each B ∈ blogs by the relevance rating :

relevance_ratingB =
ˆ|RB |
ˆ|DB |

, (4.2)

where ˆ|RB| is the number of relevant documents encountered so far on this par-
ticular blog B ∈ blogs, and ˆ|DB| is the total number of documents encountered
on this blog.

Our basic assumption is that if only a small percent of the documents on a
blog were relevant so far, then it is unlikely that we will �nd more in the future.
The reason is that blogs are usually highly thematic. For example, a blog that
contains movie reviews is unlikely to contain articles about kitchen utensils.
There are also non-thematic blogs, for example when people blog about their
everyday life, but for the purposes of thematic information gathering these are
mostly irrelevant.

Based on this assumption, we want to penalize blogs that have a small
relevance rating much more than blogs with average or high relevance rating.
As we compute the wait time for each blog independently, in the following we
will talk about a particular blog B ∈ blogs, and denote its relevance rating
relevance_ratingB by the symbol p. We de�ne the wait time to be

f(p) = p−γ − 1, (4.3)

where γ is a parameter.
The wait time function f(p) satis�es all the following requirements:

• It does not penalize blogs with nearly maximal relevance rating as f(p) is
near 0 when p is near 1, and penalizes smaller p-s more than larger ones.
The strength of this penalization can be controlled with the parameter γ.

• As the relevance rating gets smaller, f(p) penalizes the blog more and
more. The steepness of f(p) is increasing drastically as we go from p = 1
to p = 0. This means that we stop downloading irrelevant blogs quickly.

• As the relevance rating gets larger, f(p) penalizes it less and less. The
steepness of f(p) is decreasing drastically as we go from p = 0 to p = 1.
Blogs with higher relevance rating will be sampled more frequently, and
the relevance rating of relevant blogs increases with sampling. We will
download relevant blogs even if a considerable fraction of the �rst few
pages retrieved from them were irrelevant.
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• The γ parameter enables �ow control. If the number of relevant blogs is
small, then we have to permit less relevant blogs to continue downloading.
Conversely, if we can choose from a large number of relevant blogs, then
we can permit only highly relevant blogs to download.

There are a few practical considerations in computing the wait time function.
The �rst is that to estimate P (d ∈ R|d ∈ B), we have to have enough samples.
So if we encounter a new blog, we do not apply any wait time to it until we
have enough samples to estimate p. The number of samples to collect is also a
parameter.

We also have to de�ne a maximum wait time T in order to deal with the
case when p = 0. The wait time f(p) can never be more than T . If f(p) > T ,
or p = 0 (i.e., p−γ =∞), then we set f(p) = T .

4.2.3 Flow control: setting the γ parameter dynamically

In this section we introduce our method used to control the �ow to satisfy
some constraints of the crawl by means of the the γ parameter. During a
crawl, we would like to maximize the relevance rating (i.e., the percentage of
downloaded documents that are relevant), and minimize the wait time between
URLs (i.e., the average time elapsed between retrieving two documents)1. These
are two con�icting goals.

When there are many relevant pages, we can decrease the wait time freely,
but when there are but a few, we have to increase it, or the relevance rating
will drop, and the crawler will go to irrelevant territory. When there are enough
new relevant documents, we can decrease the wait time once again.

We can control the balance of relevance rating and wait time by changing
the γ parameter. By increasing γ, the preference for relevant blogs will increase
with respect to the irrelevant blogs, and the wait time will increase among all
blogs. On the other hand, if we decrease γ, then the crawl will speed up, but the
ratio between the downloading frequency of relevant and not so relevant blogs
will decrease, so relevance rating slips.

Minimizing solely the wait time one would create a crawler that is not fo-
cused at all: it would download the same number of documents from each blog.
Maximizing only the relevance rating one could easily stop the crawl: the wait
time would increase so much that crawling and downloading would practically
stop.

As a �rst step towards balancing these two attributes of the crawl one can
specify a minimum wait time. If the crawl slows down so wait time falls below
this value we decrease γ until it is above this minimum.

Now that we keep our crawler from going too slow, we can treat the maxi-
mization of the relevance rating. For this, we want to control the harvest rate, a
traditional measure of crawler performance. The harvest rate is the ratio of the

1Note that these concepts correspond to the concepts of the previous section, except that
now we consider all blogs.
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relevant collected pages to all the collected pages in a window of n downloaded
web pages.

We introduce two new parameters: one for the minimum target harvest
rate, and one for the maximum. The minimum works alike to the wait time:
if harvest rate falls below this threshold, γ is increased, so more relevant pages
will be downloaded.

The maximum wait time is necessary, because no blog can have a 100%
harvest rate. First, classi�cation of blog pages is never perfect. There will
always be pages that are misclassi�ed as irrelevant. Second, there are usually
auxiliary pages on blogs that are not relevant but necessary for navigation.
Third, harvest rate is an aggregate score between all blogs, and some blogs will
be less relevant than others. Thus, we specify the maximum so that we do
not seek for relevance ratings higher than this maximum. This means that we
consider higher relevance rates most unlikely, we will not try to go above this
value, since it could slow down our crawler considerably.

Wait time and harvest rate are estimated as follows. We use the last n doc-
ument downloads. The wait time is calculated as a moving average of the last
n wait times between downloading individual documents. The harvest rate is
calculated in a similar manner; it is the number of relevant documents down-
loaded over the last n downloads divided by n (the number of all the downloaded
documents).

4.2.4 Classifying the blog pages

To classify blog pages we use a support vector machine (SVM) classi�er [60].
It was shown by Joachims [32] that SVMs are e�cient at determining the topic
of documents. In particular, we use a linear support vector machine with the
dual coordinate descent method and L2 loss function described in [27]. Our
SVM is a binary classi�er that decides whether the document belongs to the
topic we are interested in.

Generating the feature vectors

In order to generate the feature vectors for the support vector machine, we
have to do preprocessing on the raw HTML documents.

First, we extract the textual content of the HTML documents, that is, the
text of the main article without the clutter the HTML �le contains (e.g., tags,
javascript, menu items on the page, etc.). In order to do that, we parse the
HTML �le into the standard document object model (DOM) format using the
open source tool HtmlCleaner (http://htmlcleaner.sourceforge.net/).

Then we run a simple heuristics on the DOM tree of the HTML �le that
extracts the main text. It works as follows. The algorithm looks for text at DOM
nodes while traversing the DOM tree. It adds the text to the extracted textual
content if and only if it is longer than a predetermined constant (100), and the
number of alphanumeric characters is at least 80% of all the characters in the
text. In other words, if the text is long enough to be part of an article (menus
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are short, for example), and if it contains enough alphanumeric characters to be
a text, it is added to the extracted article text. Experiments have shown that
this simple heuristics is adequate for our purposes.

The next step is stemming the extracted textual content, that is, removing
case and in�ection information from words. For this task we use the Porter
Stemmer, the de facto standard stemming algorithm in natural language pro-
cessing [54].

After stemming we create a bag of words (BoW) representation (http:
//en.wikipedia.org/wiki/Bag_of_words_model) from the stemmed textual
content. In the BoW representation the order of the words in the document is
lost, we keep only the frequency of distinct words. We count the number of oc-
currences for each word separately, and create an attribute-value representation
of the text (wi, ni), where wi is the ith distinct word and ni is the number of
occurrences of that word in the text.

We generate the feature vectors from training documents considering the
whole collection of documents. First, we establish a unique index for each word
that occurs in the document collection. A feature vector f will contain as many
elements as the number of unique words in the document collection. The ith
element fi of the feature vector contains the corresponding entry in the bag of
words representation of the document, that is, the number of occurrences of the
word associated with the index i in the document.

During crawling we do not have a document collection as we decide about
the documents separately. However, we can use the indices obtained from the
document collection we trained the SVM on. We map the words of the document
onto these indices. If a word can not be mapped onto an index, it will be
discarded. As we have a large number of training documents, the number of
discarded words will be minimal.

Training the support vector machine

We used �ve corpora for the training of the SVM. The positive examples
were taken from the IMDB's archive for the rec.arts.movies.reviews newsgroup
(http://www.imdb.com/Reviews/) that contains only movie reviews. Choosing
the negative examples was somewhat harder, because we had to incorporate ex-
amples from all conceivable topics we might encounter on the web. We included
four di�erent corpora into our set of negative examples:

1. The Reuters-21578 corpus, widely used for text classi�cation tasks, con-
tains mainly articles dealing with �nance and economics.

http://www.daviddlewis.com/resources/testcollections/

reuters21578/

2. The 4 Universities Data Set contains WWW-pages collected from com-
puter science departments of various universities.

http://www.cs.cmu.edu/afs/cs/project/theo-20/www/data/
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Figure 4.3: The process of classifying documents Documents are pre-
processed in various ways. First, the textual content is extracted, then it is
stemmed. A bag of words (BoW) representation is created from the stemmed
textual content. From the BoW representation feature vectors are generated,
where the dimension of the feature vector equals to the number of di�erent
words in the corpus. The feature vectors represent the documents for the sup-
port vector machine (SVM). The SVM is trained to decide whether a document
belongs to the topic we are interested by means of its feature vector.

3. The 20 Newsgroups Data Set is a collection of approximately 20,000 news-
group documents, partitioned (nearly) evenly across 20 di�erent news-
groups. This is a diverse collection of di�erent topics.

http://people.csail.mit.edu/jrennie/20Newsgroups/

4. The Industry Sector Data Set consists of corporate web pages classi�ed
into a topic hierarchy with about 70 leaves.

http://www.cs.umass.edu/~mccallum/data/sector.tar.gz

Altogether we had 28000 positive and 56000 negative examples. We con-
ducted two initial experiments before integrating the classi�er into our crawler.
First, we conducted a 10-fold cross-validation on the 28000 + 56000 = 84000
training documents, and measured precision and recall, where

precision =
correctly classi�ed as positive

all classi�ed as positive
(4.4)

recall =
correctly classi�ed as positive

all positive documents
(4.5)

Here positive means belonging to the topic we are interested in.
Our results are convincing: SVMs are good for such classi�cation. Our

precision is 0.993 and our recall is 0.998, giving rise to an F value of 0.995.
We also downloaded movie reviews and other articles from various sites to

test the e�ectiveness of our classi�er on data completely unrelated to our train-
ing examples. We found that our classi�er could decide whether a page was a
movie review or not with nearly 100% accuracy.
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4.2.5 Identifying blogs

We would like to constrain our web crawler to the Blogspace, that is, we only
want to crawl blogs. So, in order to decide whether to consider a web page for
crawling, we have to classify it as a blog page (i.e., part of a blog) or a non-blog
page. We do so with the help of blog ping servers.

Every time a blog is updated, it can notify one of these ping servers. The
largest and most popular ping server is http://weblogs.com. The URLs of the
updated blogs can be downloaded from this ping server. The number of URLs
that can be collected is enormous: the list we used in our crawler experiments
consists of all the unique blog domains that were updated in August, 11 million
unique blog URLs. It is safe to assume that most of the interesting blogs are in
this list, as blog search engines operate based on these lists.

But not all of these blogs contain useful information: we have to consider
spam blogs, or splogs. According to [36], a splog is simply a web spam page
that is a blog, with web spam page de�ned as

Any deliberate human action meant to trigger an unjusti�ably fa-
vorable relevance or importance of some page, considering the page's
true value.

There are several methods for blog spam �ltering, we tried the combination
of a few simple heuristics that showed to be quite e�ective in [36]. We selected
the two heuristics that have very high precision and high recall: the presence
of a generator meta tag (precision: 1.0, recall: 0.75) and the presence of link to
an RSS/Atom feed (precision: 0.96, recall: 0.90). A blog is classi�ed as not a
spam blog if either the meta tag or the link is present on its main page.

We conducted crawling experiments with and without spam blog �ltering,
and found that our focused crawling was su�cient to �lter out spam blogs,
because on spam blogs there were less relevant documents than on legitimate
blogs. Upon experimenting, we decided not to use spam �ltering to prevent any
possibility that we �lter out legitimate relevant blogs.

4.2.6 Experiments: collecting topical blog entries

The aim of this experiment was to evaluate our crawler's capability to collect
topical blog entries. The traditional measure of focused crawler performance is
the harvest rate [9]. The harvest rate is the ratio of the relevant collected pages
to all the collected pages in a window of n downloaded web pages. We chose
n = 100.

We also monitor the cumulative harvest rate, which is the ratio of all the
relevant pages collected up to a point (i.e., a number of pages downloaded) to
all the pages collected up to that point.

In addition to the harvest rate, we are also interested in the e�ciency of
our crawl. Because we are to use it as a corpus collection tool in our human
computer dialog system, and also for determining the most in�uential blogs in
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a topic, it has to be able to collect large amounts of blog entries in a relatively
short time.

After a few test crawls, we set the parameters of our crawler as follows. We
set the link count threshold to 200: we start to download a new blog if the blogs
already being downloaded link to it at least 200 times. First we experimented
with smaller values, but the number of blogs downloaded simultaneously in-
creased dramatically. In addition, because we have to download from each blog
a su�cient number of entries in order to have a reasonable estimate of the rel-
evance of that blog, the harvest rate also decreased. We found 200 to be large
enough that not too many pages from irrelevant blogs will be downloaded for
estimation, and small enough, i.e., the number of relevant blogs downloaded is
not too small.

For the same reason (i.e., that if we download a large number of entries for
estimation, the harvest rate decreases), we set the minimum number of pages
downloaded for estimation to 10, a fairly small number. We found that it is
large enough, because estimation is getting better and better for relevant blogs
as we download more and more blog entries.

We tried to achieve the maximum harvest rate, so we set unattainable mini-
mal and maximal targeted harvest rates for our crawler. The values were 0.8 and
0.9 for the minimal and for the maximal targeted harvest rate, respectively. We
also set the maximal wait time such that our crawler could maintain an average
download speed of 4 entry/sec. The number of recent downloads to compute
moving averaging (i.e., n) was set to 100. We used a constant amplitude update
for γ; in each step it was ±0.01, depending on the sign of the updating. For all
blogs, the maximum wait time was set to 8 hours.

We initialized our crawler with seed blogs from the `Best of the Web' blog
directory. Particularly, we used the blogs in the Arts/Movies/Reviews category
(http://blogs.botw.org/Arts/Movies/Reviews/). The starting seed list in-
cluded only 17 blogs. In the course of the crawl, our crawler found more than
4000 blogs starting from these 17.

The list of possible blogs was collected from http://weblogs.com. We col-
lected all the blog domains that were refreshed in August. This yielded 11
million unique blog domains, and de�ned the search space of our crawler.

The results of the experiment were very good. We could maintain the average
download speed of 4 entry per second, and while maintaining it, our cumulative
harvest rate (Fig. 4.4) never fell below 0.7. We achieve these results without
supervised learning to determine crawling policy (we use supervised learning
only to decide whether a document is relevant or not). A number of focused
crawling systems use supervised learning, and because of that, when they get
to unknown territory, they `are lost', that is, they have no information about
how to proceed, and the harvest rate decreases dramatically. This is one of the
reasons why large-scale experiments are scarce in the focused crawling literature.

We performed a large-scale experiment in the whole Blogspace, and we down-
loaded more than 1.6 million web pages in the course of 4 days. After that we
performed an even larger crawl, where we downloaded 2.5 million web pages.
Figures 4.4 and 4.5 illustrate the performance as a function of documents down-
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loaded. It is important to note that because of our �ow control mechanism, we
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Figure 4.4: The cumulative harvest rate as a function of web pages
downloaded It can be seen that the cumulative harvest rate (y axis) remains
almost constant and is constantly high as the number of pages downloaded
(x axis) grows. (a): First run eventually reaches 1.6 million downloads. (b):
Second run eventually reaches 2.5 million downloads. Note that the graphs
were generated using all the 1.6 million and 2.5 million points, i.e., they are not
smoothed in any way.

are able to maintain an almost constant cumulative harvest rate.
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Figure 4.5: The harvest rate as a function of web pages downloaded
The harvest rate (y axis) is constantly high as the number of pages downloaded
(x axis) grows. (a): First run eventually reaches 1.6 million downloads. (b):
Second run eventually reaches 2.5 million downloads. Note that the harvest
rate may drop momentarily, but it then it grows again. (See, e.g., sub�gure (a)
between 1 ·106 ≤ x ≤ 1.2 ·106.) This is the e�ect of the �ow control mechanism.

4.3 Crawl to follow spreading of information

In order to measure the spreading of information in Blogspace, we have
to monitor a number of blogs. Our aim is to cover as many di�erent stories
(see below for a de�nition) as possible, while monitoring as few blogs as we
can. One way to do that is to select the most in�uential blogs in a topic, and
monitor them. To do so, one has to identify these blogs. We applied a two step
procedure.
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First, we crawl a large portion of the Blogspace with our topical crawler,
focusing solely on the topic of interest. During this crawl we maintain all the
URLs of the blogs that were relevant to the topic in memory, and save all the
URLs we encountered and the links on the pages to disk.

Then, after the crawl has �nished, we generate a graph of all the relevant
blogs encountered by using their URLs and the links between them. Now the
task is to �nd the most in�uential blogs on this graph. We do this capitalizing
on the submodularity of a particular reward function on this graph, as described
in the next section.

After we have the most in�uential blogs in a topic, our task is simple: all we
have to do is monitor the most recent posts in these blogs.

4.3.1 The concept of submodularity

In recent years there has been a rapid development in the �eld of combina-
torial optimization, particularly in the maximization of submodular functions.
This fast development is due to the speed of the method and that the method
has theoretical warranties about the minimal performance it can reach. This
seminal method has a 30 year history. It was developed by mathematicians [18]
and entered the machine learning community only a few years ago through the
work of Kempe et al. [34] on maximizing the in�uence in social networks. Below,
we review the basic concepts of submodularity. A more elaborate description is
provided in Sec. 4.3.4. We use the submodularity principle in our searches in
Blogspace. In particular, we select the blogs to be monitored by means of this
concept. The method can be of relevance in word sense disambiguation, but we
have not tried it yet.

The key observation is that under certain conditions (see Sec. 4.3.4), greedy
optimization on matroids can provide solutions at least up to a constant factor
(e.g., (1− 1/e), or 0.63) of the optimal solution.

See Sec. 4.3.4 for a short mathematical review of submodularity.

4.3.2 Identifying the most in�uential blogs in a topic

First, we formalize our problem. We have a graph G = (V,E) of all the
relevant blogs encountered, the URLs of their pages and the links between them.
The nodes in this graph are the URLs, and the edges are the links. Information
from one blog to another propagates if the latter linked to the former, that is, in
the reverse direction of the links. We create an information propagation graph
G′ = (V,E′), where the nodes are the same as in G, but the links are reversed.

The notion of `story' can be formalized as an information cascade [4]. The
story has a starting URL, and it propagates through the edges of the graph
G′. This propagation subgraph is an information cascade. The nodes in the
information cascade are the di�erent instances of the same story. We would like
to detect as much information cascades on the graph G′ as possible.

The problem is as follows. We can select a set of nodes A on the graph G′.
The information cascades that contain those nodes will be detected. We can
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only select whole blogs, so we can only increase the set A by all the URLs that
are contained on a blog.

We have a reward function R(A), that gives us the goodness of placement
A, that is, the number of information cascades detected.2 We want to maximize
this function on the node set V of the graph G′, given the constraint that we
can only choose n number of blogs to monitor. So, we assign a cost c(b) = 1
to all blogs, and we have a budget B. We want to maximize R(A) subject to
c(A) ≤ B, where c(A) is the number of blogs whose URLs are contained in A

It can be shown that the function R(A) is submodular [41], that is, for all
placements, A ⊆ B ⊆ V and sensors s ∈ V \B, it holds that

R(A ∪ {s})−R(A) ≥ R(B ∪ {s})−R(B). (4.6)

Maximizing submodular functions is NP-hard in general [35]. However, it
can be shown that for the unit cost case, the following greedy algorithm is
near-optimal [18], that is, it achieves at least 63% of the optimum.

We start with the empty placement A0, and iteratively, in each step k we
add the node sk that gives the maximal marginal gain.

sk = arg max
s∈V \Ak−1

R(Ak−1 ∪ {s})−R(Ak−1) (4.7)

The algorithm stops once it has selected B elements. Note that in our problem,
there is no reason to add single nodes one by one. Instead, whole blogs (i.e., all
the nodes of a blog) are to be added in each step. This change does not a�ect
the algorithm, which otherwise remains the same.

4.3.3 Experiments: determining the most in�uential blogs

in a topic

We downloaded more than 1.6million web pages on more than 4000 blogs us-
ing our topical blog crawler. After that, we created the information propagation
graph G′ described in the previous section.

In this graph we considered all the non-trivial information cascades (i.e.,
those that contain at least two nodes), but when �nding those cascades we did
not follow through hubs in the information propagation graph. In this aspect,
our procedure is di�erent from that of [41]. The reason for this is that hubs (in
our case, pages with more than 200 outgoing edges) are not likely to be blog entry
pages. Aside from everyday experience, one can suspect this experimentally:
when we followed the hubs, many implausible information cascades are created,
that have 106− 107 nodes. These huge cascades are due to entering even larger
hubs step-by-step and loosing focus. This conjecture could be easily proven by
analyzing these huge cascades in details. We did not follow the hubs and these
huge cascades did not appear.

2We note that R(A) = F (A) of Eq. 4.17 if π(0) equals to the number of all cascades.
However, this number is not known. In [41] a su�ciently large number was chosen, so R(A)+
C = F (A), where C is unknown. This constant C should have no e�ect on the algorithm.
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We de�ned a budget B = 100 for the algorithm. Note that the algorithm
gives a near-optimal solution at every intermediate step, i.e., for smaller step
numbers, too. Figure 4.6 shows the proportion of cascades found at every step.
It can be seen that monitoring 20 to 40 blogs is enough to detect 80 to 90 percent
of the cascades.

In Table 4.1, we show the �rst 20 blogs the greedy algorithm found, the
number of cascades detected by them, and their relevance rating. The number
of cascades detected are calculated as the algorithm progresses. For example, the
number of cascades detected for the second blog means the number of additional
cascades detected after selecting the �rst blog. Note that the most in�uential
blogs are not the same that have the highest relevance rating. For comparison,
in Table 4.2, we have included the 20 most relevant blogs, and their relevance
rating.
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Figure 4.6: The proportion of cascades detected as a function of the
number of blogs It can be seen that as the number of blogs we monitor (x axis)
increases, the proportion of cascades detected (y axis) increases very quickly at
�rst, then it levels o�. This is a consequence of submodularity. It can also be
seen that monitoring 20 to 40 blogs is enough to detect 80 to 90 percent of the
cascades.
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blog name cascades covered relevance
daily.greencine.com 3093 0.77
www.impawards.com 1380 0.89
slate.msn.com 991 0.46
oggsmoggs.blogspot.com 415 0.80
opal�lmsarchive.blogspot.com 314 0.56
carson83.blogspot.com 162 0.69
bleeding-tree.blogspot.com 159 0.41
templeofschlock.blogspot.com 158 0.46
www.geocities.com 148 0.42
metaphilm.com 125 0.52
kamikazecamel.blogspot.com 114 0.48
diy�lmmaker.blogspot.com 102 0.40
action�ickchick.com 93 0.84
mysterymanon�lm.blogspot.com 87 0.83
blogs.amctv.com 84 0.57
ferdyon�lms.com 76 0.92
www.chutry.wordherders.net 70 0.65
he-shot-cyrus.blogspot.com 66 0.48
www.premiumhollywood.com 61 0.56
www.horror-101.com 61 0.67

Cumulated number of cascades detected 7759

Table 4.1: The 20 most in�uential blogs in the `movies' topic
We show the �rst 20 blogs the greedy algorithm found, the number of cascades
detected by them, and their relevance rating. The number of cascades detected
are calculated as the algorithm progresses. For example, the number of cascades
detected for the second blogs means the number of additional cascades detected
after selecting the �rst blog. Note that the most in�uential blogs are not the
same that have the highest relevance rating (Table 4.2).
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blog name relevance
sticky�oor.blogdrive.com 1.0
moviesblog.mtv.com 1.0
moviepalace.blogspot.com 0.99
adnauseum.blogdrive.com 0.99
www.combustiblecelluloid.com 0.98
vergingwriter.blogspot.com 0.98
distantorigin.blogdrive.com 0.97
jadedviewer.com 0.97
www.greencine.com 0.95
www.reelviews.net 0.95
�lmfreakcentral.blogspot.com 0.95
amusicment.blogspot.com 0.95
criticalcorner.net 0.95
www.dvddrive-in.com 0.94
www.the�lmpanelnotetaker.com 0.94
www.breabennett.name 0.94
ferdyon�lms.com 0.92
www.arab�lm.com 0.92
www.horrorwatch.com 0.92
mrpeelsardineliqueur.blogspot.com 0.91

Cumulated number of cascades detected 523

Table 4.2: The 20 most relevant blogs in the `movies' topic.
Note (1) the entries are very di�erent from the 20 most in�uential blogs and
(2) the cumulated number of cascades that can be detected from these blogs is
only 523. (Table 4.1)
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4.3.4 A short mathematical review of submodularity

Below, we provide the mathematical de�nition of submodularity and provide
examples for a few applications.

Notation: Let V = {1, . . . , n} denote a �nite set of n elements. Without loss
of generality, we assume that we have function F over the set with the following
properties: F (∅) = 0 and we say that F is normalized.

matroid: Given a V �nite basic set. Set of subsets of F [more precisely the
pair (V,F), where F ⊆ P(V )] is called matroid if it exhibits the following
three properties:

1. the set is not empty;
F ̸= ∅ (4.8)

2. the set is independent, i.e., all subsets of an independent set (= ele-
ments of F) is also independent;

∀X,Y ∈ P(V ) : [(X ⊆ Y ∧ Y ∈ F)⇒ X ∈ F] (4.9)

3. independent subsets can be expanded mutually: we can choose an
element from a larger set that is not element of the smaller set and
can add it to the smaller set and the expanded smaller set remains
independent.

∀K,N ∈ F : [|K| < |N | ⇒ ∃x ∈ N −K : (K ∪ {x} ∈ F)] (4.10)

Example:

1. F:={linearly independent columns of matrix A}; note: this is the
origin of the word `independent'.

One can show that under certain conditions, greedy optimization on ma-
troids can provide solutions at least up to a constant factor (e.g., (1−1/e),
or 1/2) of the optimal solution.

monotone/monotonic function: Set function F : 2V → R is monotone, if
for any A ⊆ B ⊆ V

F (B) ≥ F (A). (4.11)

For example, entropy for discrete variables: F (A) = H(xA), information
gain [(4.16)], set cover [(4.20)], rank of matroid.

symmetric function: Set function F : 2V → R is symmetric, if for any set
A ⊆ V F (A) = F (V \A). Example: mutual information.

positive/non-negative function: Set function F : 2V → R is positive if for
any set A ⊆ V F (A) ≥ 0.

submodular function
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• De�nition:

� Def1: Set function F : 2V → R is called submodular, if for any
pair of sets A,B ⊆ V

F (A ∪B) + F (A ∩B) ≤ F (A) + F (B). (4.12)

� Def2 (`adding a new observation, the smaller subset gains more
more information'; ⇔Def1): for any set pairs A ⊆ B ⊆ V and
for any s ∈ V \B

F (A ∪ {s})− F (A) ≥ F (B ∪ {s})− F (B). (4.13)

• Properties:

� submodular functions are closed for linear combinations.
� If F1 is submodular on V1 and F2 is submodular on V2, then

F : S ⊆ V1 ∪ V2 7→ F1(S ∩ V1) + F2(S ∩ V2) (4.14)

submodular V1 ∪ V2-n.
� Let

F (A) = g(|A|), (4.15)

where g : N→ R. Then: F is submodular ⇔ g is concave.

Examples:

1. Feature selection (Naive Bayes Model): Let y (`sickness'),
x1, . . . , xn (`symptoms') be stochastic variables. W look for the
most informative k pieces of features, that is:

A∗ = arg max
A:A⊆V,|A|≤k

F (A) := IG(xA; y) := H(y)−H(y|xA)

(4.16)
One can show that if xis are conditionally independent given y
then F is submodular.

2. Blogspace:

A∗ = arg max
A:A⊆V,c(A)≤B

F (A) := π(∅)− π(A), (4.17)

where π(·) tells my cost if I choose its argument. π(∅) is a large
�xed number. For example:
(a) π(A)=E[the number of unobserved info cascade if I choose

A],
(b) π(A)=E[the time that passes until I observe the info-cascades

if I choose A]
(c) π(A)=E[the number of blogs reached by the info cascade

before reaching A]
(d) linear combinations of these.
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Here:
c(A) =

∑
s∈A

c(s), (4.18)

where c(s) is the non-negative cost of the states (= the blogs).
Unit cost : when all blogs have the same cost, (c(s) = 1). Non-
constant cost : costs may di�er.
There is an e�cient algorithm for normalized, monotone, sub-
modular function that warrants 1

2 (1 − 1/e) portion of the opti-
mum. It is called cost e�ective lazy forward selection (CELF)
algorithm [41].

3. Factorizing distributions (structure learning): Let x1, . . . , xn be
stochastic variables. The task is to partition the variables into 2
groups with minimal mutual information:

A∗ = arg min
A:A⊆V,1<|A|<n

F (A) := I(xA, xV \A), (4.19)

where I(xA, xB) = H(xB)−H(xB|xA).
4. Set cover function: A ⊆ V , F (A) := the volume covered by

sensors at places of A, that is:

A∗ = arg max
A:A⊆V,|A|≤k

F (A) := | ∪i∈A Si|. (4.20)

5. Cut function: cost of cut in a graph, that is

A∗ = arg min
A:A⊆V,1<|A|<n

F (A) :=
∑

s∈A,t∈V \A

wst (4.21)

4.4 Detecting the most in�uential blogs based on

document content

In the previous semester, we have planned an experiment to detect in�uential
blogs based on content. In the preceding experiments based on the work of
Leskovec et al. [41], it was taken granted that if a blog post links to another
post, then information has spread between the two posts. We would like to test
this assumption by measuring the similarity of posts with a link between them,
and then thresholding the graph of information spreading (i.e., removing all the
edges where the similarity between two posts is less than the threshold) before
running the algorithm.

This way we will obtain information cascades where information has cer-
tainly spread between the blog posts in the cascade. If we do not perform this
thresholding, it may be the case that the two blogs are linked only because, for
example, one has a link on its menu bar to the other, but they do not share
content.
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In the last semester, we could not complete the experiments due to memory
problems. In this semester, we have successfully completed it using our new
architecture based on Lucene.

We have used 1.5 million webpages collected with our crawler, the same
amount we used in the 4th semester. We have taken the graph where the nodes
are the webpages, and the edges are the links between them. We have compared
all pairs of webpages with a link between them by the cosine distance of their
Bag of Words representation. A histogram of the distribution of the result can
be seen in Fig. 4.7. It can be seen that most of the links have a low similarity
value; the distribution is skewed to the right. Based on this data, we can not say
that a link from one document to the other implies that they share signi�cant
content.
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Figure 4.7: A histogram of the distribution of similarity values on links
We have taken the graph of 1.5 million webpages where the nodes are the pages,
and the edges are the links between them. We have compared all pairs of web-
pages with a link between them by the cosine distance of their Bag of Words rep-
resentation. The similarity values are on the horizontal, their relative frequency
on the vertical axis. The �rst bin contains all the values v with 0 <= v < 0.01,
etc. It can be seen that most of the links have a low similarity value; the dis-
tribution is skewed to the right. Based on this data, we can not say that a link
from one document to the other implies that they share signi�cant content.

We have repeated the experiments we conducted in the 4th semester (See
Sec. 4.3) with and without thresholding. The experiments without thresholding
are conducted in exactly the same way as those in the 4th semester. The
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results were also very similar (Fig. 4.8). In the other experiment we deleted
all the links where the similarity between the endpoints was less than 0.5. It
is somewhat surprising that the results did not change signi�cantly (Fig. 4.9),
except for the fact that there were less cascades (2748 vs 7471 in the case without
thresholding).
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Figure 4.8: The proportion of cascades detected as a function of the
number of blogs - not thresholded The results are consistent with our
experiments in the 4th semester, although the graph is a little less steep at �rst.
There were 7471 cascades. It can be seen that as the number of blogs we monitor
(x axis) increases, the proportion of cascades detected (y axis) increases quickly
at �rst, then it levels o�.

However, if we look at the blogs that were deemed most in�uential (Tables 4.3
and 4.4), a signi�cant change can be spotted immediately. The blogs in the
two tables are di�erent. One of the most striking examples of the dangers of
disregarding content is the blog www.espejopintado.com. It is present in the
non-thresholded table, but it is a blog in Spanish! It is not present in the
version where we have thresholded the links, because it was eliminated based
on its content. It is probably the case that many other blogs link to it on
their sidebars or as menu items, despite the fact that it is Spanish. Comparing
content can help reduce the e�ect of such artifacts.
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blog name cascades covered
screenrant.com 2645
gatewaycinephiles.com 367
www.girishshambu.com 332
www.dvdjournal.com 289
thai�lmjournal.blogspot.com 231
moviescreenshots.blogspot.com 189
www.jonathanrosenbaum.com 157
www.combustiblecelluloid.com 128
mysterymanon�lm.blogspot.com 118
livingincinema.com 98
chrisbourne.blogspot.com 97
www.impawards.com 91
www.makingof.com 86
www.simpleweblog.com 85
movieprojector.blogspot.com 79
criticafterdark.blogspot.com 77
bwanavoodoo.wordpress.com 77
www.horror-101.com 64
www.reverendphantom.com 64
www.espejopintado.com 62

Cumulated number of cascades detected 5336

Table 4.3: The 20 most in�uential blogs in the `movies' topic - not
thresholded
We show the �rst 20 blogs the greedy algorithm found, the number of cascades
detected by them, and their relevance rating. The number of cascades detected
are calculated as the algorithm progresses. For example, the number of cascades
detected for the second blogs means the number of additional cascades detected
after selecting the �rst blog. One striking example of the need of �ltering the
links based on the content of documents is the blog www.espejopintado.com.
It is present in the table, but it is a blog in Spanish!
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blog name cascades covered
jadedviewer.com 446
www.girishshambu.com 318
www.alltoo�at.com 157
screenrant.com 152
www.makingof.com 73
thai�lmjournal.blogspot.com 73
blog.nicks�ickpicks.com 69
www.espejopintado.com 65
www.reverendphantom.com 59
www.mattriviera.net 56
colemancornerincinema.blogspot.com 52
mikesyoutalkingtome.blogspot.com 50
mysterymanon�lm.blogspot.com 42
movieprojector.blogspot.com 40
criticafterdark.blogspot.com 33
www.1000misspenthours.com 31
the-black-glove.blogspot.com 31
www.if.com.au 29
thevaultofhorror.blogspot.com 28
fourofthem.blogspot.com 28

Cumulated number of cascades detected 1832

Table 4.4: The 20 most in�uential blogs in the `movies' topic - thresh-
olded
We show the �rst 20 blogs the greedy algorithm found, the number of cascades
detected by them, and their relevance rating. The number of cascades detected
are calculated as the algorithm progresses. For example, the number of cascades
detected for the second blogs means the number of additional cascades detected
after selecting the �rst blog. The Spanish blog is not present here.
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Figure 4.9: The proportion of cascades detected as a function of the
number of blogs - thresholded The results did not change after thresholding,
despite the fact that there are much less cascades left (2748 vs 7471 in the case
without thresholding). It can be seen that as the number of blogs we monitor
(x axis) increases, the proportion of cascades detected (y axis) increases very
quickly at �rst, then it levels o�.
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Chapter 5

Progress in interpreting text

5.1 Extracting word graphs from text

As advocated in the introduction, our approach towards representing seman-
tic content of documents is through keyword graphs, that can be thought of as
simple ontologies. The use of keyword graphs to decide semantic similarity of
documents is twofold: (i) we wish to represent background knowledge collected
from a corpus of documents as a large word graph, and (ii) we wish to repre-
sent single documents as small keyword graphs. We aim to decide document
similarity by comparing small keyword graphs extracted from documents also
utilizing the large background knowledge graph during the comparison process.

The core of the task is to extract word graphs, i.e. word-to-word relations
from text. Our ontology will contain (possibly weighted) words as nodes, and
labelled and weighted edges between words. The edge labels designate relations
between words coming from a variety of sources, as will be explained below. Our
main objective is to represent blog entries, which are relative short documents,
thus we need to extract every bit of meaningful information from them.

Our original methods for keyword graph extraction developed in a previous
USAF project are not satisfactory for this purpose and need to be augmented by
several novel components. The core of the original method built on statistical
techniques, �nding often co-occurring words in texts. The use of such statistical
methods is only viable on a large body of texts, since they operate by averaging
out noise. For example our methods for �nding word-to-word relations by ex-
amining the relative frequencies of words co-occurring in a speci�ed window size
were satisfactory for long scienti�c documents. However, in the case of blogs,
we must prepare for smaller and less well organized pieces of text, thus more
exact methods are required, that introduce as little noise (false word-to-word
relations) as possible.

In order to do so, we revised our ideas about keyword graph extraction,
and came up with a more decent document processing system. As already
mentioned, the aim of the system is to extract as many true word-to-word
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relations as possible. We categorized the relations of interest in the following
manner:

1. Morphological relations: derived and in�ected forms of the same word
in di�erent text positions should be recovered. This enables joining their
contexts, which helps overcome the problem of data sparsity (one word
form might occur only a few times in a document, but its derived forms
might occur as well; for example run, runs, running, ran).

2. Syntactic relations: syntactic dependencies are of primary interest,
since they re�ect semantic relations between words that de�ne the topic
of the document. The recovery of exact syntactic relations helps overcome
the noise problems introduced by statistical methods that look for word
co-occurrences in a given text window and can be compromised if textual
data is not su�cient. We employ dependency parsing to recover syntactic
relations:

(a) Dependency relations: Dependency parsing of sentences results
in labelled relations between words. Each word may have a syntactic
head it depends on, i.e. modi�es or in�uences its meaning. For
example in the sentence The monkey ate the banana., the monkey is
the subject of ate, and the banana is the object.

3. Semantic relations: Semantic relations between di�erent entities also
help joining their contexts and thus decrease the problem of data sparsity.

(a) Background knowledge from semantic corpus: When we en-
counter a word in a text, we retrieve a lot of extra information based
on our semantic knowledge about the concept that it represents. For
example, we know that a river is a kind of water, thus when we talk
about rivers, we also reason about it using the properties of water.
This kind of extra information might be utilized in automatic doc-
ument content comparison, by extending keyword graphs with word
relations from semantic corpora, such as WordNet.

(b) Pronominal anaphora resolution: We often use structures in
which we refer to previously mentioned entities without explicitly
naming them again (e.g. by using pronouns). These references might
as well hide useful word relations. For example in the sentences The
monkey ate the banana. It was very delicious. the word it refers
to the banana, and delicious is the antecedent of it, thus, delicious
should be related to the banana.

(c) Non-pronominal coreference resolution: Coreference resolution
is a task similar to anaphora resolution. Two words corefer if they
refer to the same entity. So every anaphora is also a coreference; for
our purposes the two are equivalent. One special form of coreference
is when none of the two words is a pronoun. For example John F.
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Kennedy and the President of the United States might refer to the
same person.

Let us have a look at the following excerpt from an imaginary text. How
many word-to-word relations can we extract from it?

There was a small watermill in the valley. It was quite hidden be-
tween the mountains. It is rare to see such buildings on the Danube
nowadays. The river was �owing very fast at this region of the coun-
try. The miller has just arrived...

Ideally, we would like to end up with a word graph roughly like this:

water-mill mountain-s

valley

quite

hidden

small

rare

seenow-a-day-s

Danube

build-ing-s

was

is

river

flow-ing

fast

region

country

mill-er

arrive-d

very
just

mor

sem

ent

is-a

mor

sem

Figure 5.1: Example keyword graph of the quote. Node colors encode
word weights; darker color means more important word. Arrows represent the
direction of word relations. Edge labels denote relation types (mor : morpholog-
ical relation, sem, is-a: semantic relation ent : named entity. Syntactic labels
are omitted here for legibility).

The determination of word weights will be the result of a keyword extraction
procedure operating on the extracted word graph.

In what follows, we provide a detailed description of the word-relation recog-
nition techniques enumerated above. Some of the methods were developed by
ourselves, others were obtained from publicly available sources in order to in-
tegrate them to our system. We have examined state-of-the art language pro-
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cessing packages in order to �nd recent text processing techniques and obtain
readily available software tools.

5.1.1 Morphological analysis

The task of morphological analysis is to break up a word into its constituent
morphemes (basic entities that build up words in a language). The morphemes
may designate word stems of derivational and in�ectional a�xes (pre�xes and
su�xes in English).

Our use of morphology in word graph extraction is twofold

• Lemmatization: in�ectional su�xes do not change the meaning of
words, they are used to express case, tense, plurality, etc. instead. Ob-
taining the lemma of a word enables us to recover di�erent word forms of
the same lexeme, i.e. di�erent word forms with roughly the same meaning.
For example run and runs (as a verb) mean the same, the di�erence is that
the latter is in third person singular. In�ection might also be expressed by
irregular forms, like bring - brought or child - children. However, obtaining
the lemma is not only about stripping some su�xes and checking a list
of irregular words. Consider the words underwent or �remen where the
lemmas undergo and �reman are more complicated to obtain: we must
consider pre�xing and compounding). Also the correct lemma of a word
may depend on its part of speech in the actual sentence. For example
colored as a verb has the lemma color (ed is an in�ectional su�x denot-
ing past tense), but as an adjective, its lemma is colored (ed here is a
derivational su�x).

• Derivational relatedness: by derivation we create new words from ex-
isting ones. The new word usually means something else, but it is often
strongly related to the one it is derived from. For example simplify means
to make something simple, and simpli�cation is the process itself.

We may create new word forms (in English) by su�xing (simple-ify), pre-
�xing (over-simplify) and compounding (�re-man). In the case of com-
pounds, the compounded word is also (semantically) related to its parts:
�reman is a kind of man and is related to �re. Morphological analysis
should be able to recover these relations between words in order to infer
semantic relatedness between them and their contexts. For example, we
should be able to realize that the two sentences `He oversimpli�ed the
problem.' and `The problem became too simple.' essentially convey the
same meaning.

Morphological analysis for languages other than English might be of even
more importance. For example highly in�ecting languages (like Hungarian and
Finnish) have many more forms of the same word. Other languages (like Ger-
man) make use of excessive compounding to create very long words by joining

62



parts that are themselves a�xed. Some (e.g. Arabic) languages express com-
plex syntactic structures by morphology, resulting in words that could be only
expressed by longer phrases in English.

One popular approach to morphological analysis in Natural Language Pro-
cessing is the use of stemming algorithms (e.g. Lovins, or Porter stemmer).
These algorithms are simple and fast, but have a number of inadequacies since
they operate by stripping away word endings. They:

• do not handle pre�xes (e.g. un-related)

• do not handle compounds (e.g. dog-house)

• distort word endings (e.g. generate becomes gener)

• do not take the Part of Speech of the word into account (e.g. colored as a
verb and as an adjective)

• do not output multiple possible analyses of a word (e.g. building can be a
noun or a continuous verb)

• do not detect case/tense markers (e.g. treated is the past tense of treat,
or his is third person singular and possessive).

We have examined the literature for existing approaches to morphological
processing, and looked for o�-the-self tools that could be utilized here. There
are many readily (and freely) available software packages that strip away word
endings, lemmatize words or do a little deeper analysis. Commercial products
also exist that perform more detailed analysis. Also, there exist techniques for
learning morphological analysis for various languages. However, we did not �nd
any freely available, o�-the-self system that satis�ed our requirements listed
above, so we decided to implement our own morphological analyzer. Its details
are deferred to Sec. (5.1.8). Our system provides the following functionalities:

• handles pre�xes, su�xes and compounds and their combinations without
distorting word endings

• can lemmatize words, handles irregulars even in combination with pre�x-
ing and compounding

• determines case and tense markers even for irregulars and closed class
words (e.g. pronouns)

• can enumerate multiple possible analyses of a word, also taking the desired
Part of Speech into account

• provide hypothetical analysis for unknown words (e.g. un-trool-ed)

Moreover, the implementation is relatively fast, it analyzes about 20,000
words per second on current computers, and consumes low memory.
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We have tested our morphological analyzer on a set of related word pairs
extracted from WordNet. WordNet contains word-to-word relations labelled as
`Derivationally Related'. We have generated a list of word pairs by enumerating
all such relations (9282 in total). Also, WordNet is capable of lemmatizing words
that are contained in it. Utilizing this functionality, we have also generated
a list of word-lemma pairs (37262 in total). Our analyzer recognized 90% of
the derivationally related word pairs (see table 5.1), and lemmatized more than
99% of the listed words correctly. Note that relying solely on WordNet for
morphological analysis would not be su�cient, since it is unable to handle newly
created words that are not contained in WordNet (or any manually created
dictionary), but occur often in blogs.

Analyzer No derivation Di�erent root Same root Accuracy
FreeLing 0 8142 1140 12%
morph 0 7025 2257 24%

pc-kimmo 423 1137 7722 83%
Our analyzer 0 880 8402 90%

Table 5.1: Morphological derivation comparison. Each analyzer was given
pairs of words with common roots from WordNet. The accuracy of an analyzer
is measured by how often it is able to �nd a derivation for both words in a pair,
and how often the derivations have a common root.

5.1.2 Dependency parsing

Syntactic structures in sentences often re�ect semantic relations between
concepts, thus uncovering syntactic relations between words of a sentence are
of particular interest when characterizing the content of documents. There
are many forms of syntactic analysis, from deep parsing like phrase structure
parsing, that results in a complete structural analysis of a sentence, to shallow
parsing that looks for typical simpler structures like noun phrases or structured
entities like dates. Somewhere between the two is dependency parsing, which
aims to recover dependency relations between words of a sentence. For example
a verb may have its subject and its object as its dependents. A noun may have
an adjective and a determiner as its dependents. These dependency relations
often re�ect semantic relations between words. For example, in the phrase `the
blue car', the adjective blue is a dependent of the noun car. Semantically, blue
is related to car by denoting its color.

In dependency relations, the relation is always between a head word and
a dependent word. In most cases this dependency means that the dependent
word modi�es or clari�es the meaning of the head word, provides more detail
about it. Thus, we intuitively found this kind of relation adequate for building
semantic graphs describing the meaning of documents.

One popular readily available method for dependency parsing in the liter-
ature is the method of Nivre et. al. [49] Their parser, called the Malt parser
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has been successfully applied to many languages including English, and has
a publicly available Java implementation that we integrated into our system.
Howewer, it does not take raw text as its input: it operates on tokenized,
part-of-speech tagged sentences, not on pure text. Fortunately, another freely
available tool, the Stanford Part-of-Speech tagger does the preprocessing job
we need: it tokenizes sentences into words and punctuation signs, and attaches
part-of-speech tags to them as well. Both systems had been trained on English
texts, utilizing the same part-of-speech tag set, called the Penn tag set. This
enabled us to link the two to form one system that processes pure text and
delivers dependency relations.

5.1.3 Anaphora resolution

Anaphors refer to entities in other sentences or di�erent parts of the same
sentence. Anaphora resolution highly relies on the semantics of the words. In
the example `The monkey ate the banana. It was very delicious.', the word it
may refer to the monkey and to the banana as well. The only cue to decide
which it truly refers to is the meaning of the words monkey and banana. Usually
a banana can be delicious, and, while a monkey could also be, it is clear that
the monkey eats the banana and not the opposite, thus it should refer to the
banana. In another example `The boy and the girl were sitting next to each
other. She didn't say a word.', the pronoun she refers to the girl, and not to the
boy, because of gender agreement. Deciding gender for pronouns is easy, while
doing so for general nouns like boy, father, guard, etc. is not, and again, requires
some semantic knowledge.

Anaphora resolution systems build on grammatical analysis of a sentence to
enumerate possible referents. They often require detailed analysis of sentences,
like complete or partial phrase structures. Some readily available systems oper-
ate on grammatically analyzed input, or employ a parsing module. The systems
we decided to use, OpenNlp and JavaRap, both rely on phrase structure parsers.
The former relies on the OpenNlp parser, the latter on the Charniak parser.

See also the section on incorporated software in Sec. 5.1.9)

5.1.4 Non-pronominal coreference resolution

The task of non-pronominal coreference resolution is similar to pronominal
anaphora resolution: names or words referring to the same entity must be recov-
ered. However, the solution methods may be quite di�erent, since recognition
of coreference between named entities requires even more knowledge about the
meaning of the entities.

5.1.5 Acronym resolution

Acronyms, like USA or FBI might also be resolved by utilizing a database of
such abbreviations, but care must also be taken to handle ambiguous acronyms.
In that case, the context of the acronym must also be taken into account for
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proper resolution. Furthermore, new acronyms are created on a daily basis that
a database can not contain, so algorithms for on the �y resolution of acronyms
may also be needed.

5.1.6 Keyword extraction

To further compress the graph representation of documents, we may reduce
the size of the graphs by keeping only the most important words and relations
between them. The graph representation seems promising for �nding important
words. Building on this representation, we have devised a new method for
extracting keywords.

In our new approach to keyword extraction, a word is important if it is
supported by its context. Consider a document that is about arti�cial neural
networks for example. If the document mentions a lot of terms related to ar-
ti�cial neural networks then the words neural and network will be considered
important words in the document, even if they do not occur very often. As an
opposing example, if a word occurs quite frequently in a document, but is not
related to the main topic of the document (for example, `let us denote...' occurs
often in mathematical texts, yet denote is rarely a keyword), it should not be
treated as an important word, since it does not receive support from its context.
Thus, we can conclude that it is exactly the graph structure of word-to-word
relations that can be used to decide the importance of the word.

Relaxation algorithms

Di�usion and relaxation algorithms can be used to propagate node activa-
tions on weighted graphs. These algorithms are essentially the mathematical
implementations of the idea of the contextual support described above. Sup-
pose that we are given a word graph with weighted edges and nodes extracted
from a document by inserting edges as described in the previous sections. Edge
weights represent connectivity (i.e. relation) strengths between words. Node
weights represent word importance. Informally, our algorithm for keyword ex-
traction performs the following: starting from an initial set of word weights
set by the frequencies of the words in the document, it relaxes the weights by
spreading activation through the edges between words.

More formally, let us denote the vector of word weights by w, and the matrix
of edge weights by G, the algorithm performs the following iteration (t denotes
time index):

wt+1 = σ
(
(1− α)Gwt + αw0

)
, (5.1)

where α is some smoothing value in [0, 1], and σ is some nonlinear function, for
example it may represent renormalization of the vector to prevent the iteration
from diverging. Activation spreading is implemented by multiplying weights w
in time step t by the edge-weight matrix. Note, that if α = 0, i.e. the iteration
is not driven by the original weights but it is only used in the initialization.
Furthermore, if the matrix G is stochastic and ergodic and σ is the identity
function, than the matrix G and the vector w0 de�ne a Markov chain, and the
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iteration converges to the (unique) stationary distribution of that Markov chain.
The algorithm then resembles to the PageRank algorithm used to calculate the
importance of documents on the Internet.

5.1.7 Feature representation of words based on relations

An ontology extracted from a large body of texts enables the characterization
of a word's meaning through its relations. A popular representation of entities,
called feature representation can be generated from such an ontology. This
representation embeds words to the space of word-to-word relations, and results
in real valued vector representation for each word. Feature representations are
useful for a number of machine learning algorithms. For example, a simple
application could be to decide word similarity or to cluster words based on
similarity. Similarity in feature space might be computed for example by taking
the cosine of the angle of two vectors (dot product).

Here, we describe one way to generate feature representations from word
graphs. We map each word to a real valued vector according to the following.
Let N be the number of words, and K be the number of relation types in the
word graph. The feature vector of a word w is a vector of 2K parts, each part
containing N entries:

Fw = [v1; . . . ; vK ; v1; . . . ; vK ] , (5.2)

where the �rst K parts represent the weights of the outgoing edges from word
w, and the second K parts represent the incoming edges of word w, each kind
of relation taking one part. For example the N values in vk are the weights of
outgoing edges being labelled by the kth relation type for each of the N possible
target words in the graph. Of course, when no edge exists between two words
with the speci�ed label in the graph, the corresponding value is 0. Thus, this
representation will be quite sparse, since most words are only connected to a
fraction of the other words in the graph, and only with some kind of the possible
relation types.

5.1.8 Details of our morphological analysis algorithm

Overview

In English, the task of a morphological analyzer is to �nd pre�xes and su�xes
attached to one or more stems. Su�xing is used most extensively to alter the
meaning of the word and derive new ones. In most cases, they change the part-
of-speech of the word to enable usage in a di�erent grammatical role. Of course,
the meaning of the word changes in this case, however, the two words are often
strongly related, for example simple and simplify.

There can be many ambiguities in morphological processing, at many levels.
For example, a word might be segmented in more ways into morphemes. Also,
the morphemes may have more than one morphological roles, e.g. ant can be a
stem and a su�x too. Third, a segmentation can be interpreted in more than

67



one way, e.g. the su�x ed may be the indicator of past tense and also may be
used to derive an adjective.

Thus, our morphological analyzer aims to perform all of the following tasks:

• handle pre�xes, su�xes and compounds, recognize known stems

• supply all possible segmentations of a word

• supply all possible interpretations of a segmentation

• supply in�ectional information (tense, case) even for regular words

• supply a hypothetical interpretation for words with unknown stems and
known a�xes

The algorithm works by �rst segmenting the word into possible sequences of
morphemes by �nding all morphemes contained in a word and trying to chain
them after one another and �ltering morphemes that do not �t into a chain.
Then, it enumerates all possible legal interpretations of a segmentation, �ltering
them by applying a�x attachment rules.

Data used to build an analyzer

The analyzer is built from the following pieces of information.

• List of words: a list of English words along with their possible part-of-
speech tags. The list also contains derived forms of a word. It has been
generated with the use of a corpus of texts and a lexicon. A word was
incorporated into the list if it occurred in the lexicon and occurred in the
corpus at least three times.

• List of a�xes: a list of pre�x and su�x rules. A rule is of the form

affix lemma_PoS-derived_PoS.inflection,

where affix is a pre�x or a su�x, lemma_PoS is the part-of-speech of
the word to which affix can be attached to, and derived_PoS is the
part-of-speech of the resulting derived word, and inflection is the list
of in�ection �ags of the resulting word. One a�x may have more then
one interpretations, i.e. having more than one lemma_PoS - derived_PoS
pairs. For example, the rule

ing v-n v-v.cont,

means that the su�x ing may derive a noun from a verb or may create a
continuous verb from a verb.

• List of morphological (rewrite) rules: these rules can be applied to
words to alter their ending to enable the attachment of su�xes. The rules
are of the form

endin_str rewrite_str,
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where ending_str is the word ending to which the rule can be applied,
and rewrite_str is the string which is attached to the word, after the
ending is deleted. The strings may contain the capital letters C and V to
denote any consonant or vowel. For example the rule

Cy Ci,

means that if a word ends with a letter y after a consonant, than the y

may be rewritten to an i, like in imply → implication.

A rule also may express for example that the last consonant must be
doubled if the previous letter was a vowel

VC VCC,

like in big → bigger.

• List of regular words: lists containing regular past tenses for verbs,
plurals for nouns, and in�ection for adjectives.
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Algorithm details

In the following, we describe the steps of the algorithm in detail.

• Recognition of possible morphemes: A string retrieval tree data
structure (trie) is built from the (words) stems and a�xes contained the
above described lists. Upon reading a word, this recognizer recognizes
all possible morphemes contained in the word. Also, this trie contains
morpheme forms altered by the morphological rewrite rules. For example
it contains imply and impli too and it recognizes imply in both cases.
With this technique, it is able to recognize morphemes even if it is al-
tered because of su�xes being attached to it. For example, upon reading
implication, it recognizes the following morphemes in the following (end)
positions, shown with the rules applied: im(2), imply(y→i,5) ic(6), ate(-
e,8), ion(11), on(13).

• Chaining of morphemes: After recognizing the possible morphemes,
the algorithm tries to chain the possible morphemes to a sequence that
reconstructs the whole word. In English, morphemes can be pre�xes,
su�xes and stems. The chain recognizer accepts the following regular
expression: prefix* stem+ suffix*, that is, one or more stems preceded
by zero or more pre�xes and followed by one or more su�xes. As an
exception, if the stem is a regular form of a word, than no additional
su�xes can be attached. Also, in�ectional su�xes must be attached at
the end of the word, and no other su�xes may follow. Additionally, the
possible segmentations are �ltered by the applicability of the a�x rules to
match part-of-speech of the lemma and derived word. For example, take
the word buildings. It segments to build-ing-s. Build is a verb, and ing
may be attached to a verb, and it either creates a noun or a continuous
verb. If building is considered a continuous verb, then no other su�xes
may be attached, since ing is in�ectional in this sense. However, when
building is considered a noun, then s may be attached as a plural marker
(note, that it could also be attached as a third person marker to a verb).

• Enumeration of all legal interpretations: Unfortunately, legality of
su�x attachment may not be decided by linearly processing the morpheme
sequence, because pre�xes may also modify the part-of-speech of the word.
As an example, take the word enlargement. Large is an adjective, and
ment can be attached to verbs to create a noun. However, the pre�x en
creates a verb from an adjective, thus ment may be attached to enlarge.
For this reason, the chaining steps enumerates segmentations that have
the possibility to result in a legal interpretation, and a further step checks
legality thoroughly.

As an other source of ambiguity, the morphemes of the same segmentation
may be ordered in more than one ways to result in legal interpretations but
with di�erent meaning. Take for example undoable. It can be interpreted
as undo-able as some action that can be undone. Alternatively, it may
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mean un-doable, as something that can not be done. Because of this, all
possible orderings of pre�x and su�x attachments must be enumerated
and checked for legality.

5.1.9 Software

In this section we list all the software we have developed or utilized so far.
There is one section for software we have developed, one for the software we
have incorporated into our system. For the software we have incorporated we
also give their function in the system.

Software we have developed

Word graph visualization GUI: We have updated our word graph vi-
sualization GUI developed in our previous project to support a richer graph
format. The graph visualization tool utilizes JGraph, a free graph visualization
library for Java. The updates include proper visualization of directed and la-
belled arcs and the aesthetic layout and visibility of large graphs. As for the
layout, we have utilized a commercial level layout package for JGraph that is
free for academic usage.

Ontology Extractor: The ontology extractor performs di�erent tasks (Fig-
ure 5.2) for di�erent types of relations incorporated into the ontology: depen-
dency parsing for the dependency relations, coreference resolution for corefer-
ence relations, morphological analysis for the morphological relations. In ad-
dition we incorporate the semantic relations from Wordnet. Coreference or
anaphora resolution is used also to resolve pronominal coreference or anaphora
and substitute the antecedent for the anaphor.

We mainly use open source software to realise these tasks. Figure 5.3 is
a schematic of the ontology extractor that shows the software used and the
connection points, i.e. the points one software gets its input from the output
of another software. The list of these software along with their function can be
found in Sec. 5.1.9.

NIPG Morphological Analyzer: A morphological analyzer with the fol-
lowing capabilities:

• handles pre�xes, su�xes and compounds and their combinations without
distorting word endings

• can lemmatize words, handles irregulars even in combination with pre�x-
ing and compounding
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Figure 5.2: The tasks the ontology extractor performs The ontology ex-
tractor performs di�erent tasks for di�erent types of relations incorporated into
the ontology: dependency parsing for the dependency relations, coreference res-
olution for coreference relations, morphological analysis for the morphological
relations. In addition we incorporate the semantic relations from Wordnet.
Coreference or anaphora resolution is used also to resolve pronominal corefer-
ence or anaphora, and substitute the antecedent for the anaphor in the ontology.

• determines case and tense markers even for irregulars and closed class
words (e.g. pronouns)

• can enumerate multiple possible analyses of a word, also taking the desired
Part of Speech into account

• provide hypothetical analysis for unknown words (e.g. un-trool-ed)

Moreover, the implementation is relatively fast, it analyzes about 20.000
words per second on current computers, and consumes low memory.

Its details can be found in Sec. 5.1.8.

Software we have incorporated into our system

Charniak Parser: Is a phrase structure parser.
Homepage: http://www.cs.brown.edu/ ec/
Function: JavaRap uses this parser to obtain the phrase structure trees of the
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Figure 5.3: The software used in the ontology extractor In the boxes are
the names of the software used, and the arrow points represent the �ow of data
between the software. They point from the software that gives its output to the
software that gets it as input.

input sentences. It then processes these trees to resolve anaphors.

JavaRap: JavaRap is an anaphora resolution system based on heuristics
written in java.
Homepage: http://www.comp.nus.edu.sg/ qiul/NLPTools/JavaRAP.html
Function: We use it to perform anaphora resolution, and substitute the an-
tecedents for the resolved pronominal anaphors in our ontology.

MaltParser: MaltParser is a system for data-driven dependency pars-
ing, which can be used to induce a parsing model from treebank data and
to parse new data using an induced model. MaltParser can be characterized as
a data-driven parser-generator. While a traditional parser-generator constructs
a parser given a grammar, a data-driven parser-generator constructs a parser
given a treebank. MaltParser is an implementation of inductive dependency
parsing, where the syntactic analysis of a sentence amounts to the derivation of
a dependency structure, and where inductive machine learning is used to guide
the parser at nondeterministic choice points.
Homepage: http://w3.msi.vxu.se/ jha/maltparser/
Function: We use it to obtain dependency relations for our ontology.
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OpenNLP: A collection of natural language processing tools that includes
a sentence detector, tokenizer, pos-tagger, shallow and full syntactic parser, and
a named-entity detector. It is also capable of coreference resolution based on
machine learning.
Homepage: http://opennlp.sourceforge.net/
Function: We use it to perform coreference resolution, and then incorporate the
coreference relations into our ontology. We also use it to substitute resolved
pronominal anaphors for their antecedents.

Stanford Log-linear Part-Of-Speech Tagger: A part-of-speech tagger.
It also contains a sentence splitter and a tokenizer.
Homepage: http://nlp.stanford.edu/software/tagger.shtml
Function: We use it to split the raw input text into tokenized sentences, then
assign part-of-speech tags to the words. The output is then feeded into Malt-
Parser.

WordNet: WordNet is a large lexical database of English. Nouns, verbs, ad-
jectives and adverbs are grouped into sets of cognitive synonyms (synsets), each
expressing a distinct concept. Synsets are interlinked by means of conceptual-
semantic and lexical relations. The resulting network of meaningfully related
words and concepts can be navigated with the browser. WordNet is also freely
and publicly available for download. WordNet's structure makes it a useful tool
for computational linguistics and natural language processing.
Homepage: http://wordnet.princeton.edu/
Function: We incorporate various semantic relationships from WordNet into
our ontology.

5.2 Keyword extraction based on word graphs

We have mentioned in the previous report, our approach to keyword extrac-
tion builds on our word graph based representation of documents, and we were
planning to utilize di�usion or relaxation based methods that simulate activa-
tion spreading on the word graph to determine the importance of words. These
algorithms are essentially the mathematical implementations of the idea of the
contextual support [12].

In our approach to keyword extraction, a word is important if it is supported
by its context. Consider a document that is about arti�cial neural networks for
example. If the document mentions a lot of terms related to arti�cial neural
networks then the words neural and network will be considered important words
in the document, even if they do not occur very often. As an opposing example, if
a word occurs quite frequently in a document, but is not related to the main topic
of the document (for example, `let us denote...' occurs often in mathematical
texts, yet denote is rarely a keyword), it should not be treated as an important
word, since it does not receive support from its context. Thus, we conjecture
that it is exactly the graph structure of word-to-word relations that can be used
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to decide about the importance of the word.

5.2.1 Algorithm details: 1-dimensional embedding

This term, we have elaborated these ideas and developed a new keyword
extraction algorithm. We formalized the idea of contextual support the following
way. Let us suppose, that we have n words in a document, and a context graph
G contains edge weights {gij}n1 describing the strength of relationships between
words.1 We wish to calculate a weight vector w of length n assigning each word
a weight wi proportional to its importance in the document. Let the weight wi

of the ith word be equal to the support it receives from the words it is connected
to, weighted by the strength of the connection:

wi :=
n∑

j=1

gijwj ∀i = 1 . . . n (5.3)

Obviously, this assignment of weights can not be calculated explicitly since it is
recursively referring to the weights of other words. However, the above equations
can be used as an iterative assignment to calculate the required weights. Writing
the assignment in matrix form, we get:

wt+1 := Gwt , (5.4)

We have to ensure that the iteration is convergent. If the matrix G is stochastic,
the theory of Markov processes can be used to analyze the above iteration. It is
known, that a stochastic (square) matrix describes a Markov process, and if that
process is ergodic, the above iteration converges to the unique stationary point
w∞ of the process, from any initial point w0. We sill use the above iteration to
determine word importance weights.

Creating a stochastic matrix from our graph of word-to-word relationships
extracted from a document requires only straightforward normalization. How-
ever, ensuring that the produced process is ergodic leaves us with more choices.
We have experimented with two methods. One straightforward way to ensure
ergodicity is to make the matrix symmetric (which corresponds to neglecting
the direction of each edge), if the word graph is connected. This ensures the
each node can be reached from each other node.

The above iteration resembles the PageRank algorithm used to calculate
the importance of web pages on the Internet. The exact formula of the PageR-
ank algorithm is a slightly modi�ed version of Eq. (5.4), which ensures ergod-

1The word weight is used in two contexts in the literature. One meaning refers to impor-
tance, or relevance e.g., the importance of the word in the document, like in our case, here.
The other context is the area of graph theory. In the classical case, one talks about nodes
and edges between nodes. Edges between nodes are either present or absent; they take values
from set {0, 1}. The concept of weighted graph is a generalization: the value set is extended
to reals, sometimes to a set of reals. In this case, one talks about the weight of an edge, or
the adjacency matrix of the nodes. This ambiguity should cause no confusion, because they
either refer to the nodes or to the edges of the graph.
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icity and also deals with dangling nodes:

wt+1 := αGwt +
(
αaTwt + (1− α)

)
v , (5.5)

where the vector a has a 1 as its ith entry if the ith word has no outgoing
links, and 0 otherwise, the vector v de�nes so called `jump' probabilities, which
are uniformly 1

n in our case, and α is a weighting factor, α = 0.85 in case of
the PageRank algorithm (see [38] for details). We have also implemented and
tested this version of the algorithm.

It is worth noting that our iterative method does not take any initial word
weights into account, since it converges to the same stationary point, regardless
of the initial weight vector. Previously, we were planning to incorporate word
frequencies into the keyword extraction algorithm, but it can be missed in the
present form of the iteration. This is so, because the frequencies of the words
are implicitly present in the iteration through the frequencies (weights) of their
links; it is roughly true, that the frequency of a word equals the sum of the
frequencies of its links. We are still using the (normalized version of the) word
frequency vector to initialize the iteration (i.e., w0), because it may decrease
the time of convergence.

To sum up, our keyword extraction algorithm works the following way. First,
we generate a word graph from a given document using our software developed in
the previous term. The result is a graph containing word-to-word morphological,
syntactic and semantic relations. The relations have their frequencies assigned
to them, and the words also have their frequencies assigned as an initial weight.
Then, we apply some graph transformation methods that calculate �nal edge
weights by dealing with multiple edges between words, and ensuring that the
resulting matrix is ergodic and stochastic. In this step, we have experimented
with a number of transformation methods, the details are listed in Appendix A.
(Sec. 5.2.3). Also, we take the logarithm of word frequencies and then normalize
them. After this, we run the iterative procedure that results in the relaxed word
weights, which we interpret as importance weights. The words receiving the
most weight will be considered the keywords of the document.

Our algorithm requires (i) no additional information about the structure of
the document and (ii) no training on particular document sets belonging to a
topic. We compare it to the state-of-the-art method both on long and on short
documents in the next subsection.

5.2.2 Evaluation results

To test our method for keyword extraction, we have chosen to evaluate it
on documents that have keywords assigned to them by their authors. We have
downloaded 150 such documents from the Behavioral and Brain Sciences (BBS)
online archive2, and evaluated our method not only against the author supplied
keyword set, but also against a standard, state-of-the art keyphrase extraction
method, the Keyphrase Extraction Algorithm (KEA)3.

2http://www.bbsonline.org/
3http://www.nzdl.org/Kea/
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To shortly summarize the operation of KEA, it learns a decision surface in
a supervised manner, based on features of keyphrases in training documents in
a given domain or topic. The features it uses include some which build on the
structure of documents such as the position of the �rst occurrence of a word
(for example, in scienti�c texts, keywords are mentioned at the beginning of
the document with high probability), and also on other documents in the same
domain, like Term Frequency × Inverse Document Frequency (TF × IDF) of
a phrase (i.e., words that occur in only one document many times, may be an
important word in that document).

Thus, KEA (i) requires topic speci�c documents, because it needs TF and
IDF data and (ii) information about the structure of the document, because it
assumes that relevant words occur early in (scienti�c) documents. We can not
apply either of these constraints.

To test these properties of our system against KEA, we have used two doc-
ument sets, the full BBS documents as long documents, and the abstracts of
the BBS documents as short documents. Our di�usion based system was tested
in two modes. We used the baseline di�usion model, i.e., Eq. (5.4) on an undi-
rected, connected word graph (to ensure ergodicity). Results are denoted by
Di�-BL. We also used the PageRank equation (Eq. (5.5)) that we denoted by
Di�-PR.

Evaluation criteria

To quantify our results, we have used standard measures of precision (P ),
recall (R), and their combination into an F-measure (F ). They are respectively
de�ned as

P =
true positive

true positive + false positive
(5.6)

R =
true positive

true positive + false negative
(5.7)

F =
2PR

P +R
(5.8)

The meanings of precision (P ) and recall (R) are illustrated in Fig. 5.4. F -
measure expresses the balance between the precision and recall by their har-
monic mean.

Both KEA and our algorithm assign weights to words and we used the
distribution of these weights to quantify the results of the two algorithms against
the manually supplied keywords. The general idea is to check how much weight
is assigned to those words that are marked as keywords by the authors. It may
be important to note that in some cases, the author's keywords do not even
occur in the document, because keywords are pointers that may refer to topics
related to the thesis of the paper.

Let KD denote the set of author assigned keywords to a document D, and
let x ∈ D and x ∈ KD denote that a word x is contained in a document D or in
the set of keywords KD, respectively. Furthermore, let |KD| mean the number
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Figure 5.4: Precision and Recall depend on the outcome � separated by the
oval curve � of a query and its relation to all relevant documents (the left
hand side of the true decision surface) and the non-relevant documents (the
right hand side of the true decision surface). Correct results are denoted
by green. The more correct results (green), the better. Figure is modi�ed
from http://en.wikipedia.org/wiki/File:Recall-precision.svg. Copy-
right granted for any purpose, unless it is against the law.

of keywords assigned by the author to document D. Let 0 ≤ w(x) ≤ 1 denote
the weight assigned to word x by a keyword extraction algorithm. Then, the
de�nitions of precision P , and recall R for the case of the keyword extractor can
be generalized as:

P =

∑
x∈KD

w(x)∑
y∈D w(y)

(5.9)

R =

∑
x∈KD

w(x)

|KD|
(5.10)

The corresponding F -measure remains F = 2PR
P+R .

Results

The following table details the results for the various cases. The left hand
side of the table shows the results (precision, recall and F-score) for full BBS
documents, the right side shows the same for the abstracts. The lines correspond
to the algorithms discussed above (KEA, Di�-BL and Di�-PR).

As can be seen from the results, our algorithm produces as good as or better
word weights as KEA, especially when tested on abstracts and when KEA is
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Full documens Abstracts
Algorithm Prec. Recall F-score Prec. Recall F-score
KEA-BBS 0.193 0.325 0.242 0.154 0.190 0.170
Di�-PR 0.141 0.236 0.177 0.167 0.184 0.175
Di�-BL preprocessed 0.303 0.183 0.228 0.250 0.166 0.200
Di�-PR preprocessed 0.243 0.206 0.223 0.179 0.206 0.192

Table 5.2: Keyword extraction results: The columns show the precision,
recall and F-score of the algorithms run on the full BBS documents and on
the abstracts. The algorithms shown are KEA; Di�-PR: di�usion algorithm
using PageRank (Eq. (5.5)); Di�-BL preprocessed: baseline di�usion equation
(Eq. (5.4)) on a preprocessed graph; Di�-PR preprocessed: di�usion algorithm
using PageRank (Eq. (5.5)) on a preprocessed graph. The details of graph
preprocessing can be found in Sec. 5.2.3).

not trained in the documents of the topic at hand.

5.2.3 Preprocessing the word graph

To test the e�ects of di�erent graph preprocessing mechanisms on keyword
extraction, we have developed a modular system, where the di�erent modules
do di�erent transformations on our graph. The modules can be executed se-
quentially, in any order. For example, one module combines the di�erent types
of edges between two nodes into a single edge by adding them, another module
takes all the edges in a graph and takes their logarithms. So if we apply them
sequentially, we get a graph in which the weight of an edge between two nodes
is the logarithm of the sum of the weights of the edges between the nodes of the
original graph. We call these modules graph transmuters.

Our test procedure was the following. First, we applied our transmuters,
then ran the PageRank algorithm, calculated the F-scores (for details see Sec-
tion 5.2.2), and sorted the results (transmuter - F-score pairs) in decreasing
order. Then we repeated this procedure for all the 2-long sequential combina-
tions of transmuters, for the 3-long combinations, etc. So, in the end we had
the F-measure for all the possible combinations in decreasing order in a table.
Looking at this table we could infer the best graph preprocessing applicable
to the di�erent cases. We found that going above three long combinations is
unnecessary, so we only include the best transmuters up to three long combina-
tions.

We used the following transmuters (they can be found in the attached soft-
ware: java package nipg.nlp.ontology.transmuters):

• BinaryGraphTransmuter: sets all of the weights of the graph to 1

• CombineByAddingGraphTransmuter: for all pairs of nodes, combines the
egdes between them into a single edge by adding their weights

• CombineByMaxingGraphTransmuter: for all pairs of nodes, combines the
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egdes between them into a single edge by taking the maximum of their
weights

• CombineByMultiplyingGraphTransmuter: for all pairs of nodes, combines
the egdes between them into a single edge by multiplying their weights

• GlobalNormalizeGraphTransmuter: divides all the weights with the
largest weight separately in each relation category.

• LogGraphTransmuter: takes ln(1 + w(e)) for all edges e in the graph,
where w(e) is the weight of the edge

• MorphologyWordnetToAverageGraphTransmuter: Sets the weight of all
the wordnet and morphological edges to the average of the weight of the
dependency edges

• NormalizeInGraphTransmuter: For all nodes, the length of the vector
containing the weights of the edges coming into that node will be 1

• NormalizeOutGraphTransmuter: For all nodes, the length of the vector
containing the weights of the edges going out of that node will be 1

• StochasticizeInGraphTransmuter: For all nodes, the sum of the weights
of the edges coming into that node will be 1

• StochasticizeOutGraphTransmuter: For all nodes, the sum of the weights
of the edges going out of that node will be 1

• SymmetrizeByAddingGraphTransmuter: Creates an undirected graph by
duplicating all edges in the opposite direction. If there is already an
edge with the same label in the opposing direction, the weight of the new
undirected edge will be the sum of the two directed edges.

• SymmetrizeByContextInOutGraphTransmuter: Create a symmetric word
similarity graph based on the principle that similar words have similar con-
text using the cosine similarity measure. Takes into account both inbound
and outbound links.

• SymmetrizeByContextOutGraphTransmuter: Create a symmetric word
similarity graph based on the principle that similar words have similar
context using the cosine similarity measure. Takes into account only out-
bound links.

• SymmetrizeByMaxingGraphTransmuter: Creates an undirected graph by
duplicating all edges in the opposite direction. If there is already an
edge with the same label in the opposing direction, the weight of the new
undirected edge will be the sum of the two directed edges.
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Di�-BL
Without preprocessing 0.05
SymmetrizeByContextInOut 0.19
SymmetrizeByMaxing SymmetrizeByMultiplying 0.24
SymmetrizeByMaxing SymmetrizeByMultiplying NormalizeOut 0.24

Di�-PR
Without preprocessing 0.17
SymmetrizeByContextOut 0.2
SymmetrizeByMaxing SymmetrizeByMultiplying 0.22
SymmetrizeByMaxing SymmetrizeByMultiplying SymmetrizeByMultiplying 0.23

Table 5.3: Results of combinatorial graph preprocessing on BBS full
documents: The �rst column shows the sequentially applied transmuters in
order, the second column contains the corresponding F-scores. The rows show
the best F-score obtained with no preprocessing, one transmuter applied, two
transmuters applied and with three transmuters applied, respectively. The �rst
table was generated using the Di�-BL, the second table by the Di�-PR algorithm
(see Section 5.2.1).

• SymmetrizeByMultiplyingGraphTransmuter: Creates an undirected
graph by duplicating all edges in the opposite direction. If there is al-
ready an edge with the same label in the opposing direction, the weight
of the new undirected edge will be the sum of the two directed edges.

We tested the e�ects of graph preprocessing on the results of keyword ex-
traction for both the Di�-BL and the Di�-PR algorithms described in Section
5.2.1, and for both the BBS abstracts and the BBS full documents. We found
signi�cant improvements with preprocessing in all the four cases.
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Di�-BL
Without preprocessing 0.15
SymmetrizeByContextOut 0.17
SymmetrizeByAdding SymmetrizeByContextInOut 0.19
SymmetrizeByMaxing SymmetrizeByMultiplying SymmetrizeByMultiplying 0.2

Di�-PR
Without preprocessing 0.18
SymmetrizeByContextOut 0.19
SymmetrizeByContextOut SymmetrizeByAdding 0.19
SymmetrizeByAdding SymmetrizeByContextInOut SymmetrizeByMultiplying 0.2

Table 5.4: Results of combinatorial graph preprocessing on BBS ab-
stracts: The �rst column shows the sequentially applied transmuters in order,
the second column contains the corresponding F-scores. The rows show the
best F-score obtained with no preprocessing, one transmuter applied, two trans-
muters applied and with three transmuters applied, respectively. The �rst table
was generated using the Di�-BL, the second table by the Di�-PR algorithm (see
Section 5.2.1).
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5.3 Document similarity and blog di�usion

In order to identify groups of similar blog entries, that is, to identify blog
entry di�usion across blogs, �rst we need means to decide how similar blog
entries are. Second, we need methods to �nd groups (or clusters) of blog entries
which contain highly similar blog entries. To test our methods, we have created
an experimental test bed, in which we collected blog entries of multiple groups
of related documents, along with unrelated, but slightly similar documents, and
tested how much our methods are able to �nd those related groups. We used
KurzweilAI network4 and selected spreading information by hand. We also used
Google, to �nd similar documents. First, we describe our document similarity
methods (Subsection 5.3.1). Then we elaborate on our database and present our
results (Subsection 5.3.2). Finally, we show, how to pull out groups of related
documents without prior knowledge (Subsection 5.3.3).

5.3.1 Document similarity measures

To compare documents, we also rely on the graph representation that we
extract using our linguistic tools. We experimented with two kind of similarity
measures.

Feature vector based similarity

The �rst is a feature-vector based similarity, where the features of a docu-
ment are its words (note, that only open class words (nouns, verbs, adjectives
and adverbs) are contained in the word graph of a document, that is, stop words
are �ltered based on grammatical category). In this representation, each fea-
ture (word) is weighted by the output of our di�usion based keyword extraction
algorithm. After producing a feature vectors u and v for two documents, we
have a couple of popular and thoroughly studied choices to calculate a similarity
measure between documents. The �rst is the cosine angle of two feature vectors:

SC(u,v) =

∑n
i=1 uivi√∑n

i=1 u
2
i

√∑n
i=1 v

2
i

(5.11)

The second is the Jaccard similarity coe�cient:

SJ (u,v) =

∑n
i=1 min(ui, vi)∑n
i=1 max(ui, vi)

(5.12)

And the third we have experimented with is the Dice similarity coe�cient:

SD(u,v) =

∑n
i=1 2min(ui, vi)∑n

i=1 ui + vi
(5.13)

All of these measures produce similarity values in [0, 1]. Note that we are throw-
ing away all edge related information from the document graphs when using fea-
ture vector based similarity measures, because the feature vectors themselves

4http://www.kurzweilai.net/index.html?flash=1
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(the word weights) were calculated based on the document graph by our novel
keyword extraction algorithm.

Graph kernel based similarity

The second method for document comparison is based on graph kernels, a
more sophisticated method for comparing graphs in general. This method is
related to our more-or-less ad-hoc idea for graph comparison that we presented
in our previous EOARD project (FA8655-03-1-3036). There, we compared word
graphs by counting common nodes and edges. Here, the method also builds upon
common nodes and edges, but it takes advantage of the �exibility of the kernel
concept.

Kernels extend the idea of scalar product to spaces of structured objects,
including strings, trees and graphs. Random walk graph kernels [6, 61] that we
are using here have the intuitive interpretation of preforming random walks on
the graphs to be compared and counting the number of common walks. This is
done by performing random walks on a direct product graph. It is worth not-
ing that di�usion equations and random walks are closely related in Euclidean
spaces. They are also related for the case of graphs.5

Given two graphs G = (V,E) and G′ = (V ′, E′) with |V | = n and |V ′| = n′,
their direct product G× is a graph with vertex set

V× = {(v, v′) : v ∈ V, v′ ∈ V ′} ,

and edge set

E× = {((u, u′), (v, v′)) : (u, v) ∈ E, (u′, v′) ∈ E′} .

In other words G× is a graph over pairs of vertices from G and G′, and two
vertices in G× are neighbors if and only if the corresponding vertices in G and
G′ are both neighbors (see Fig. 5.5). The size of the resulting graph is n× = nn′.
If A and A′ are adjacency matrices of G and G′, then the adjacency matrix of
G× is A× = A⊗A′, where ⊗ denotes the Kronecker product of two matrices.

If the edges in the two graphs are weighted by weight matrixW andW ′, then
we can produce the weight matrix W× = W ⊗W ′, by taking their Kronecker
product analogously to the adjacency matrix. From now on, we suppose that
weight matrices are columns normalized, so that the entries represent transition
probabilities between nodes.

If the nodes of the two graphs are labeled, as in the case of words graphs,
where the node labels are the words, then the direct product graph can be
restricted to contain only nodes that have identical, or similar labels in the two
graphs. Label similarity can be de�ned by a node label kernel (having values in
[0, 1]), which can be a synonymity measure in case of words as node labels. In
this case, the weight of an edge in the direct product graph is multiplied by the
synonymity value of the labels of both end node pairs.

5http://en.wikipedia.org/wiki/Random_walk
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Figure 5.5: Two graphs (top left and right) and their direct product (bottom).
Each node of the direct product graph is labelled with a pair of nodes; an edge
exists in the direct product if and only if the corresponding nodes are adjacent
in both original graphs. For instance, nodes 11' and 32' are adjacent because
there is an edge between nodes 1 and 3 in the �rst, and 1' and 2' in the second
graph [61].

Random walk graph kernels calculate similarity of two graphs by simulating
random walks on the direct product graph, which corresponds to simulating si-
multaneous random walks on the two graphs. A well known method to simulate
random walks of length k on a graph represented by its adjacency matrix is to
take the kth power of the adjacency matrix. Let p and p′ be initial node distri-
butions for graphs G and G′. Given the weight matrix W×, initial probability
distribution p× = p ⊗ p′, we can de�ne a kernel on G and G′ as (see [6, 61] for
details)

k(G,G′) =

∞∑
k=1

λkW k
×p× . (5.14)

The parameter λ < 1 can be thought of as a discount factor that weights longer
walks less than short ones. The initial probability distribution p× may be used
to weight nodes according to their importance as starting points for the random
walks. Usually, a uniform distribution is used here, but in our case, the weight
vectors returned by the keyword extraction algorithm may as well be used as
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initial vectors.
To evaluate this graph kernel, let us transform the above formula. Suppose,

that I denotes the identity matrix of size n×, then we have

k(G,G′) =
∞∑
k=1

λkW k
×p×

=
( ∞∑
k=0

λkW k
× − I

)
p×

= (I− λW×)
−1p× − p× .

It can be seen, that the key in evaluating the graph kernel is calculating the
inverse (I − λW×)

−1. Knowing that the size of the matrix to be inverted is
n× = nn′, this becomes computationally intractable for graphs of even moderate
size (few hundreds of nodes). Therefore, e�cient approximations are required.
One simple possibility is to directly compute x = (I− λW×)

−1p× by means of
a �xed-point iteration. Suppose, we are aiming to solve the linear system

(I− λW×)x = p× , (5.15)

we can rewrite this equation as

x = p× + λW×x . (5.16)

Now solving for x is equivalent to �nding the �xed point of the above iteration.
Letting xt denote the value of x at iteration t, we set x0 = p×, then compute

xt+1 = p× + λW×xt (5.17)

repeatedly until ∥xt+1 − xt∥ < ε, where ∥ · ∥ denotes the Euclidean norm, and
ε is some prede�ned tolerance. This is guaranteed to converge if λ < 1/ξmax,
where ξmax is the largest eigenvalue of W×. In our case, convergence happens
for λ < 1, because of W× being a stochastic matrix. In our experiments, we
used λ = 0.9 and ε = 0 because complete convergence happened in all of the
cases within few tens of iterations.

Note, that although formula (5.14) satis�es the requirements of a kernel func-
tion, it does not produce values between 0 and 1. It produces values greater
than 0, returning 0 for graphs that are totally unrelated, which happens when
labels are also taken into account and the intersection of the two label sets is
empty. In order to receive values in [0, 1], we normalize kernel values, general-
izing the idea of cosine distance of vectors, which is the normalized version of
the scalar product :

cos(x,y) =
< x,y >

∥x∥ · ∥y∥
=

< x,y >
√
< x,x >< y,y >

.

Analogously, we have

k̃(G,G′) =
k(G,G′)√

k(G,G) k(G′, G′)
(5.18)

as our word graph similarity measure.
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5.3.2 Evaluation of document similarity

To evaluate our document similarity measures we have collected 130 blog
entries organized in the following manner:

1. We have used KurzweilAI6. We chose 8 di�erent topics, followed the links
of KurzweilAI, and manually collected documents about these news that
spread over the Internet, but were rewritten in most cases.

2. In each topic, we entered a list of keywords to a Google query, and the
results were scanned manually to organize the results into true and false
hits.

3. For each topic we have collected 20 documents; about 10 of them were
truly about the topic, and about another 10 were false hits returned by
Google. In one case, the topic had no false hits, so altogether, we collected
130 documents. Note that we used the main entries of Google that tries
to o�er di�erent hits about the same topic and organizes similar hits for
each entry. Thus, the entries we used are considered (somewhat) di�erent
by Google and the di�erences are similar.

The purpose of this manual collection of a test database was to create a gold
standard, against which we can evaluate our document similarity measures and
our algorithm that �nds related groups of documents.

The document similarity was evaluated the following way. Each document
was compared with each other document, which produced a document similarity
matrix (or table) of size N × N supposing we have N documents (N was 130
in this particular study). The matrix contains values between 0 and 1, values
close to 1 indicating similar documents, and values close to 0 indicating fairly
dissimilar documents. The following table shows a plot of an example similarity
matrix, where the values are color coded, (deep) red colors indicating values
close to 1, (deep) blue values are close to 0 and yellow values are in between the
two.

For the sake of visualization, we organized our documents utilizing our a
priori knowledge about the manually collected groups: the group of documents
belonging to the same Google query formed took compact intervals within the
document indices. True and false hits were separated within each interval. Then
the similarity matrix should show a block diagonal structure, as can be seen in
Figure 5.6: for example, documents 10 to 20 are indicated as similar ones,
which is right in this case. The above matrix shows about 8 groups of related
documents. Note, that the matrix is not fully diagonal, since there are (false)
documents that are not part of any group.

This visualization technique is useful for human observation and evaluation
of the document similarity measure, but it does not provide a quantitative
description of how good a similarity measure is. Of course, an ultimate measure
of performance would be to run an algorithm that extracts groups of related

6http://www.kurzweilai.net/index.html?flash=1
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Figure 5.6: An example document similarity matrix. Red values indicate
high similarity, blue values indicate dissimilarity (see the color bar of the �gure).
The matrix shows reddish blocks in the diagonal which indicate groups of similar
documents.

documents based on the similarity matrix, and check how well it performed
compared to our a priory knowledge of related groups. To this end, �rst we
show document similarity measures without reference to any group extraction
algorithm. In what follows, we provide two such quantities related to similarity
matrices. Later, in Section 5.3.3, we will show results on algorithms aiming to
�nd related groups based on the similarity matrix.

The �rst is a value of contrast de�ned between the matrix cells that should
be 1 and those that should be 0. Again, we are using our a priory knowledge
that we know which documents are related in this test scenario. Let us denote
by i ∼ j, that document i is similar to document j, and by i � j that document
i is dissimilar to document j. Suppose our similarity values are contained in
matrix S. Let Ns and Nd denote the number of similar and dissimilar pairs,
respectively. Then our contrast C is de�ned by

C(S) =
1

Ns

∑
i∼j

Sij −
1

Nd

∑
i�j

Sij . (5.19)

This contrast is the di�erence of the mean similarity values of similar and dis-
similar document pairs. This contrast value may be a good indicator of how well
we will be able to separate groups of related documents from other unrelated
documents.

The second quantity is based on the idea that an algorithm that will aim
at extracting groups of related documents, will make a binary decision at some
point: which documents it treats as related and which ones as unrelated. This
binary decision making is modelled by thresholding the values in the similarity
matrix by some threshold θ, and setting values greater that θ to 1 and others to
0, and counting true positive, false positive, true negative and false negative hits
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to calculate precision, recall and a �nal F-measure. For example, true positives
are the values which result in a 1 after thresholding and should be truly a 1 in the
matrix, according to our a-priory knowledge. False positives are the values that
are thresholded to 1 but should not have been. Negatives are de�ned similarly.
Then the standard de�nition of precision (P ), recall (R) and their harmonic
mean F are as given in Eqs. (5.6)-(5.8).

To every threshold value 0 ≤ θ ≤ 1 a single precision value and a single
recall value can be calculated. We may then analyze our similarity matrix as a
function of θ, for example measure the maximal value of F-measure attainable,
or investigate how robust the precision and recall values are against the change
of the threshold θ. For example, if a similarity matrix is such that the resulting
precision and recall values are robust against a wide range of θ values, it may
indicate, that an algorithm that is trying to �nd related groups will have an
more robust, more reliable result with this de�nition of similarity.

In the following, we list our results with the similarity measures de�ned in
the previous sections and analyze the results according to the above criteria. We
list four similarity measures, the three feature-vector based measures (cosine7,
Dice8, Jaccard9) and the graph-kernel based similarity measure. In case of graph
kernels, we have experimented with the weight vector produced by keyword
extraction. We used it as the initial node distributions instead of a uniform
distribution, but it did not produce signi�cant di�erences, hence those results
are not duplicated here. Figure 5.7 shows the resulting document similarity
matrices. It can be seen, that the graph-kernel based matrix is quite di�erent
from the feature vector based ones; it is a more strict measure, forcing o�-
diagonal entries to be lower in general and making the block structure more
clear, but at the same time, entries in the diagonal also became somewhat
lower. Note that there are 13 groups of documents, 8 true sets and 5 false sets
that we collected.

Figure 5.8 shows the change of precision, recall and the F-measure as a
function of the threshold θ as introduced above. It can be seen that all similarity
measures have a peak F-measure point at some low threshold level as one would
expect, and the maximal F-values are around 0.8. The Jaccard and graph-kernel
based measures have their maximum at lower threshold levels, because they are
stricter than the other two, this can be seen from their matrices; they are cleaner
in the o�-diagonal entries. At the same time, the cosine measure is the most
robust against the value of θ, it produces a slightly �atter F-curve as θ changes.
Note, that this kind of robustness correlates with the contrast values of the four
similarity matrices: the higher the contrast, the �atter the F-curve.

7http://en.wikipedia.org/wiki/Cosine_similarity
8http://en.wikipedia.org/wiki/Dice%27s_coefficient
9http://en.wikipedia.org/wiki/Jaccard_index

89



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Cosine distance (0.422)
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(b) Dice similarity (0.350)
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(c) Jaccard similarity (0.286)
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Figure 5.7: Document similarity matrices with four graph similarity
measures. Red values indicate high similarity, blue values indicate dissimilar-
ity. The matrix shows reddish blocks in the diagonal which indicate groups of
similar documents. The values in brackets are contrast values de�ned by (5.19).
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Figure 5.8: Precision, Recall and F-measure for the four graph simi-
larity measures. Blue line: precision, green line: recall, red line: F-measure
as a function of threshold θ. See text for further details and discussion.
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5.3.3 Finding related groups of documents

The document similarity matrices produced by comparison of collected doc-
uments can be used to identify groups of related documents. However, this is a
nontrivial task. In the previous section, we have used an arti�cial data set, in
which (besides having the a priory knowledge of which documents are related)
related documents were carefully ordered, so that the document similarity ma-
trix shows a block diagonal structure. This was merely for the sake of human
visualization about the performance of the similarity algorithms. However, in a
real data set, we do not know a priory which documents are related, and so it
is highly unlikely that a block diagonal matrix arises.

We are looking for state-of-the-art methods that �nd groups of documents
in which the overall similarity is high, and the group cannot be extended by
other, highly similar documents. Thinking in graph terms (the similarity values
de�ne a similarity graph over the set of documents), an algorithm must look for
densely connected clusters.

However, traditional clustering algorithms are not su�cient for this purpose,
for two reasons. First, they assign each document to a cluster, which is not a
good model, since not all documents participate in a group of related blog
entries. Second, they assign each document to at most one cluster, that is they
are limited to non-overlapping clusters. This feature is not attractive, because
in many occasions, a document can be categorized according to two or more
di�erent criteria, and so it might be part of more than one group of related
documents.

We have two options here. We can look for permutations that exchange
indices with the objective that we get the best block-diagonal adjacency matrix.
This method uncovers good blocks and the `coupling' between them, i.e., the
documents that belong to more than one block. An extension of this method is to
use all (or the best) similarity methods and to look for joint block diagonalization
of the adjacency matrices. This is a novel method and there are fast algorithms
for not too large adjacency matrices (see [53,57,58] and references therein) and
we are considering to implement it since we are having high F-values and small
percentages do count in our project.

Here, we have decided to use a special cluster �nding graph algorithm to
extract groups of related documents, called Clique Finder, developed by Vicsek
et. al. [51]. Also, we have developed and experimented with a simple heuristic
method that groups documents based on the similarity matrix, but scales much
better than the Clique Finder.

The Clique Finder algorithm

The Clique Finder algorithm works on graphs and aims to �nd the so called
k-connected components in graphs. For binary graphs, a k-connected component
is a relaxed notion for a clique. While a clique is a subgraph in which all
nodes are connected to all other nodes, in a k-connected component, nodes are
connected to at least k other nodes in the subgraph. Furthermore, a k-connected
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component is maximal in the sense that no other node can be added to it while
retaining k-connectedness. The notion of k-connectedness can be generalized
to weighted graphs as well [17], by enforcing an additional requirement to a
k-connected set of nodes. This extra requirement states that the intensity of
a k-connected set of nodes, which is the geometric mean of the edge weights
between the nodes in the set, must be above a certain intensity threshold. The
Clique Finder algorithm aims to �nd all (weighted) k-connected components
in a graph. For details of the algorithm, we refer the interested reader to [51]
and [17] and references therein. The algorithm has been successfully applied
to various areas, such as extraction of interacting protein groups and analysis
of word association networks. Figure 5.9 shows an example graph and its k-
connected components.

Figure 5.9: An example for k-connected components in a graph. The
graph has three components shown by the three colors. Those nodes that are
not densely connected to a group of other nodes are not contained in any cliques,
while some nodes are contained in more than one cliques as well.

We have applied the Clique Finding algorithm to the document graphs re-
sulting from the similarity measures described in the previous section. We tested
both the unweighted and the weighted version of the algorithm, on all document
similarity graphs introduced in Section 5.3.

For the unweighted algorithm, we had to convert the weighted graph of
document similarities to a binary one, which could be done by thresholding
the weights and setting the weights below the threshold to 0 and the rest to 1.
However, the threshold value can signi�cantly change the resulting graph and
so the components found. Also, the algorithm has as additional parameter the
value of k in the de�nition of k-connected components. This value also a�ects
the components found. We have tested a range of parameter values both for the
threshold and the value of k. We have evaluated the found components against
the a priory known true components in terms of F-measure, just as in Section
5.3.2. In the case of the weighted algorithm, the component intensity threshold
is used by the algorithm to prune away components that are too weak, thus we
have tested against various values of this parameter in this case. However, as
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preprocessing, the graph is still thresholded with a low edge weight threshold
and the edges below the threshold are deleted to ensure that it becomes sparse
enough for the algorithm to run in a reasonable amount of time. We have used
preprocessing weight thresholds low enough to keep the majority of the edges,
but high enough to ensure computational tractability. This preprocessing was
reinforced by the results, the best intensity values were considerably higher than
our thresholding value.

Figure 5.10 shows the results for the four document similarity matrices in
the unweighted case, while Figure 5.11 shows the same for the weighted case.
It can be seen that in both cases and for all four document similarity measures,
there is a range of parameter values, in which the Clique Finding algorithm
�nds a set of components with fairly good F-measure, around 0.85 being the
best for the graph kernel based similarity measure. Note that we have 13 groups
of documents with 3 documents that have no false sets and a group of 5 paired
sets with both true and false sets. Each set has 10 documents. False sets were
collected using Google.

In general, the algorithm �nds good components at low values of k, mostly at
k = 3, however, the optimal threshold varies greatly for the di�erent measures.
Although [17] provides a heuristic to �nd a good intensity threshold value for
a given value of k, we believe it is not applicable in our case. The heuristic is
based on lowering the intensity threshold value until a huge component starts
to emerge, which point is de�ned to be where the size of the largest component
is twice as large as that of the second largest component. The heuristic might
work well for scale-free graphs, but in our case there is no reason to assume that
the size of the �rst two largest components di�er by a factor of 2. Nonetheless,
we have tried the heuristic, but it did really not work for our data, in it general it
picked too low threshold values, that is, it found too large components (resulting
in poor recall values) as expected.

A heuristic method for �nding strongly connected components

We have also experimented with a heuristic method that we developed to
�nd strongly connected components. The method greedily extracts groups of
strongly related documents. Its advantage over the Clique Finding algorithm is
that it does not require a parameter k, neither an intensity threshold, it scales
better and it seems to �nd good, strongly connected components �rst and loosely
connected ones come at the end. Furthermore, a suitable stopping conditions
seems to emerge from our experiments to automatically determine when to stop
extracting further components and avoid �nding too loosely coupled ones.

The algorithm iteratively �nds new strongly connected components. In each
iteration it builds a new component, by picking a starting (heaviest/strongest)
edge, which de�nes two starting nodes, and iteratively inserts new nodes to the
component. In each step, it inserts the node that is most strongly connected to
the current component being built by observing the di�erence in the intensity of
the component and the newly added edges (which we call intensity drop) when
trying to insert a given node. This greedy method de�nes an insertion order
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Figure 5.10: F-measure of components found by the unweighted clique
�nding algorithm. Quantitative values of the F-measure are provided by the
color bars. Note the di�erences in the color scales as well as in the y scales. x
axis: the value of k; y axis: weight threshold value.

among all nodes to the current component. After this, it �nds a cuto� point in
this insertion sequence. The cuto� point is characteristic in our database: the
intensity drop has a sharp peak (see Fig. 5.12). This indicates strong clustering:
upon reaching the `limits' of the cluster the change of the intensity drops sharply
for the initially chosen node. This cuto� point limits the insertion of those nodes
that would decrease the intensity of the component strongly, because they are
barely connected to the component. When a component is found, its edges are
excluded from the selection of an initial node for the next components. There is
also an interesting point in the sequence of components found: as the algorithm
proceeds, a fairly large component appears; it is considerably larger than the
previously found components. This point is chosen to be our stopping criterion
for extracting further components (and this large component is not included in
the �nal set of components). More precisely, we chose the point at which the
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Figure 5.11: F-measure of components found by the weighted clique
�nding algorithm. Quantitative values of the F-measure are provided by the
color bars. Note the di�erences in the color scales as well as in the y scales.
x axis: the value of k; y axis: intensity threshold value. The numbers in the
brackets denote the preprocessing weight threshold values used.

size of a newly found component is more than twice as large as any previously
found components. This is the same stopping criterion that Farkas et al. [17] are
using for �nding an optimal intensity threshold in the weighted Clique Finding
algorithm. The procedure is detailed in Algorithm 1.

The intensity of a component may be de�ned in various ways. We have
experimented with two measures, namely with the arithmetic and with the
geometric mean of the weights in the component. The geometric mean (as used
in the Clique Finding algorithm) is a more strict measure of intensity, it returns
zero if one of the edges between any two of the nodes in the component is zero.

We have tested our algorithm by calculating the F-measure of the compo-
nents found after �nding each new component (one iteration in the algorithm).
Figure 5.13 shows the results for the four di�erent document similarity measures
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Figure 5.12: Sharp peak in the intensity drop upon inserting new nodes
one-by-one. x axis: the number of nodes added; y axis: intensity drop.

Algorithm 1 : Find strongly connected components in a graph

inputs: edge weights for the graph

1: while size of last component < 2 · size of previous largest component do
2: �nd initial (heaviest) edge for next component
3: calculate the node insertion sequence:

in each step insert the node that decreases
the intensity of the component the least

4: �nd cuto� point:
the point where the intensity in the insertion sequence drops most

5: exclude the edges of the found component for initial edge selection
6: end while

using the arithmetic mean of weights as a measure of component intensity.
It can be seen, that the F-measure (blue curves) increases fast at the begin-

ning, reaching a peak of above 0.85 in some cases, but at least about 0.8 at all
cases. After reaching a peak, the F-measure drops quickly. These curves indi-
cate, that the algorithm �nds truly related sets of documents at the beginning,
and later extracts loosely related components as well. At the same time, the
size of the components found (green curve) has a sharp increase, which exactly
coincides with the drop in the F-measure curve. The above mentioned stop-
ping criterion utilizing this sudden increase in component sizes can determine
the exact point to stop extracting further (loosely coupled components). For
example, with the Dice and Jaccard measures, the algorithm stops after �nding
components having an F-measure of 0.88 and 0.86 respectively.
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Figure 5.13: F-measure and size of components found by our heuristic
component �nding algorithm de�ning component intensity by arith-
metic mean of edge weights. x axis: the number of components extracted.
Components are shown in order, but not all found components are shown. y
axis: the F-measure (blue) and size of the components (green) found. The size
of the components are normalized for the largest component found. The vertical
dotted red line indicates the stopping point selected by our algorithm, which in
three cases coincides with the peak point of the F-measure curve.

The use of geometric mean of edge weights as component intensity did not
perform as good as the arithmetic mean. As can be seen from the two examples
in Figure 5.14, the F-measure curve has smaller drops after its peak point, as
well as the component size curve has smaller increases in it, which changes are
not enough before extracting a large number of loosely coupled components as
well for our stopping criterion to halt the algorithm early enough.

Our heuristics does not depend on either k, or the intensity, but it de-
pends on the peculiar property, the sharp peak of the intensity curve when the
algorithm proceeds. Such a parameter-free algorithm that can reach a
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Figure 5.14: F-measure and size of components found by our heuristic
component �nding algorithm de�ning component intensity by geo-
metric mean of edge weights. x axis: the number of components extracted.
Components are shown in order, but not all found components are shown. y
axis: the F-measure (blue) and size of the components (green) found. The size
of the components are normalized for the largest component found.

high F-measure is very relevant for us. Also note, that only edges are
excluded when �nding new starting points for components, but not later when
extending the current component, so the algorithm can �nd overlapping docu-
ment clusters and indeed it does in many of the above cases. For example, it
often �nds a strongly connected core of a true component, and later it �nds a
broader, but looser version of the same true component. This point deserves
further investigations.

5.4 Utilizing synonyms for document similarity

In this section, we detail our results to improve document comparison using
background knowledge and accounting for di�ering vocabularies in documents
through synonymity relations among words. First, we de�ne word synonymity
measures to automatically extract synonyms from a set of parsed documents,
and show the results of that automatic collection. Then, we de�ne some ways of
extending document graphs with synonyms, and show our �ndings on document
comparison taking synonyms into account.

5.4.1 Word synonymity measures

As it is well accepted in the �eld of computational linguistics, the meaning
of a word is characterized by the context it is embedded into. We have demon-
strated this in our previous work [19], in which we used word contexts de�ned
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by nearness in sentences to extract synonymous words. Nearness means that
we had counted how often words occurred near each other (within a window
of given size) in sentences. Then, the words occurring frequently near a given
word made up the context of that word, and we used these contexts as feature
vectors to compare words using cosine distance.

In this project, we have used more sophisticated synonymity measures. The
contexts of a given word were not de�ned by the other words that occurred near
to it, but rather by the other words that occurred in grammatical relations with
it. Also, the feature vectors acquired this way were compared with improved,
more sophisticated measures.

To introduce the similarity measures, �rst we need to introduce some nota-
tion. We will be dealing with triples of the form (x, r, y), where x and y are
words, and r denotes grammatical relations. We denote by |x, r, y| the frequency
of word x occurring with word y in relation r. We have collected such frequency
information from the British National Corpus (BNC), by grammatical parsing
during the last term. We use asterisk notation to denote sets of relations in
which one or more arguments run through its ranges. For example (x, ∗, y)
triples denote all relations between x and y, regardless of the exact type of rela-
tion r. Analogously, |x, ∗, y| is the number of such relations. Let p(x, r, y) be the
probability of a triple, de�ned by p(x, r, y) = |x, r, y|/|∗, ∗, ∗|. The probabilities
for sets of relations with asterisk notation are de�ned similarly by normalizing
with |∗, ∗, ∗|. Let T (x) denote the set of pairs (r, y) for which |x, r, y| > 0.

We have experimented with two measures from the literature. The �rst
is Lin's measure from [42], one of the �rst papers on the �eld. Lin used an
additional measure I(x, r, y) which is related to the mutual information between
x and y and is de�ned as (see [42] for details)

I(x, r, y) = log
|x, r, y| × |∗, r, ∗|
|x, r, ∗| × |∗, r, y|

.

Furthermore, de�ne, T̃ (x) as the set of pairs (r, y) where I(x, r, y) is positive.
Then, the similarity between words x and y is de�ned by

simLin(x, y) =

∑
(r,z)∈T̃ (x)∩T̃ (y)

(
I(x, r, z) + I(y, r, z)

)∑
(r,z)∈T̃ (x) I(x, r, z) +

∑
(r,z)∈T̃ (y) I(y, r, z)

. (5.20)

The second measure is from [13], which paper details and tests a variety
of word similarity measures. We have chosen a Jaccard measure based ver-
sion, because good performance was reported Curran and Moens [13] with this
measure:

simJac(x, y) =

∑
(r,z)∈T (x)∩T (y) min

(
W (x, r, z),W (y, r, z)

)∑
(r,z)∈T (x)∪T (y) max

(
W (x, r, z),W (y, r, z)

) , (5.21)

whereW (x, r, y) is a weight function corresponding to a T-test (see [13] for more
details), de�ned by

W (x, r, y) =
p(x, r, y)− p(∗, r, y)p(x, ∗, ∗)√

p(∗, r, y)p(x, ∗, ∗)
.
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Figure 5.15: Extension of graph based on background knowledge. Re-
lated graphs are expected to result in grater increase of overlap, than unrelated.
Solid line: original graphs, dotted line: extended graphs. graphs.

The advantage of the Jaccard measure based similarity over Lin's measure is
that it takes less computation to evaluate, and gives rise to further speed im-
provements by approximation through sampling. We have implemented this
approximation to enable fast enough synonym generation for our word list of
about 50,000 words in the word graph extracted from BNC. In Appendix B, we
list a couple of synonyms extracted with these measures.

5.4.2 Extending document graphs with synonyms

In this section we list some novel ways we tried to include background knowl-
edge in document comparison. As we have mentioned in the previous report,
we have generated a large word graph by parsing the British National Corpus
for grammatical relations, and extended it with morphological and semantic
relations from WordNet.10 We are aiming to use this large graph to extend
small graphs extracted from blog entries. The idea is illustrated in Figure 5.15:
by extending documents with synonyms and related words, two graphs that
are about the same topic will have higher overlap, hence higher similarity. We
would expect less increase in overlap for unrelated graphs.

We have devised four methods to extend word graphs with related words or
synonyms. Three of these extend the word graph of a document explicitly, and
the fourth extends the graphs implicitly during graph comparison in the graph
kernel method.

1. Extend the word graph with all related words in the BNC graph that are
directly linked to one of the words in the graph through a grammatical
relation, i.e. add the 1 neighbors of the words to the graph.

10http://wordnet.princeton.edu/

101



2. Extend the word graph with top ranked synonyms of its words, extracted
from the BNC graph using the synonymity measures de�ned in the previ-
ous section.

(a) Connect synonyms to the word they are related to with links labeled
as `synonym', as shown in Figure 5.16 (a). (The text of the label
itself does not matter, what matters is where the word is linked.) The
weight of the link equals the synonymity value between the two words,
multiplied by a factor of 25, which was determined experimentally,
to add more emphasis to the relatively weak synonymity links when
compared to all other link weights in the graph.

(b) Link synonyms to the context of the word they are related to, by
copying its grammatical links. This is justi�ed by the assumption
that synonymous words tend to appear in similar contexts. This
kind of extension generates identical contexts for two synonymous
words in the resulting graph, as shown in Figure 5.16 (b).

We have also experimented with restricting these kind of extensions to
words occurring in the union of the two graphs being compared, i.e. extend
the �rst graph with the synonyms occurring in the second graph and vice
versa. In addition, we have further restricted the extension to words that
are not too frequent in BNC.

3. Extend graphs implicitly during document comparison with graph kernels,
by utilizing word similarity extracted from BNC as node label kernel (see
Section 5.3.1).

5.4.3 Document similarity on the extended graphs

We have evaluated our document similarity measures de�ned in Section 5.3
on the document graphs extended with synonyms. The keyword extraction
algorithm was run after the extension to allow weighing of newly inserted words
as well. After that, document comparison proceeded just as in the unextended
case. In case of graph kernel based document similarity, the implicit extension
based on node label kernel was also tested.

To test whether extension with synonyms resulted in improvements in docu-
ment comparison, we examined the resulting document similarity matrices and
the corresponding maximal attainable F-measure by choosing the right thresh-
old θ as de�ned in Section 5.3.2.

Unfortunately, most of our attempts failed in utilizing extension by synonyms
in document similarity. Extension in most cases spoiled performance and we
could improve the results only by a slight margin and only in a single case. In
this respect, we should note, however, that our graph comparison methods are
highly e�cient and we worked on improving our already high F values.

The general lesson that we learned is that we have to perform extension and
restriction very carefully. The only extension method that was able to increase
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(a) Adding synonym
links

(b) Copying contextual
links

Figure 5.16: Extension of graphs with synonyms. (a) synonyms are linked
by edges labelled `synonym' to the original words. (b) synonyms are linked to
the context of the original word with the labels of the contextual links copied.

performance was when (i) we used the synonyms list from BNC to extend the
graphs, (ii) we restricted the list of synonyms to words that are not too frequent
in BNC (the extension seems to be quite insensitive to the exact frequency
threshold; thresholding with maximum frequency of 50 and 250 produced very
similar results), (iii) we did not restrict the extension to words occurring in either
of the two documents being compared and (iv) the synonyms were linked to their
related word in the graphs with a single link labeled `synonym'. Figure 5.17
shows the increase in the maximal attainable F-measure for the successful case
of extension, along with an unsuccessful case. Other unsuccessful cases produced
similar decrease in the F-measure. The successful extension peaks when 1 or
2 synonyms per word were used, adding more related words did not increase
the performance further, but it did not decrease it either, suggesting that the
method is somehow robust against being extended with further related but not
too frequent words.

In short, if F-values are high, synonymity should be handled very carefully:
it is hard to improve the results, whereas it is easy to spoil them. Graph based
comparisons are highly e�cient, so more sophisticated methods are needed to
take advantage of the background knowledge.

We have also examined what exactly increased the F-measure during the
extension. Figure 5.18 shows the change in precision, recall and F-measure for
the cosine similarity measure (the change in the other measures is similar). It
can be seen, that it is the precision that increases around the peak point, and
that recall does not change signi�cantly. This seems to suggest that it is the
number of false positives hits that decreases, but more detailed investigation
should be carried out about this matter.
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Figure 5.17: Successful and unsuccessful extension of graphs with syn-
onyms for document comparison. x axis: the number of synonymous words
used in extension; y axis: maximal attainable F-measure. The solid line shows
the increase in F-measure for the successful extension method; the dotted line
shows the decrease in F-measure for the same method without restricting syn-
onyms to low frequency words in BNC.

5.5 Learning topics from documents

5.5.1 The algorithm

Dictionary learning algorithms learn basis vectors that capture high-level
features of unlabeled data. They model each input vector as the linear combi-
nation of a few basis vectors. We use sparse coding to break documents down
into topics. In our case, the input vectors are Bag of Words representations
of documents. Each column of the input matrix X = [x1,x2, . . . ,xn] ∈ Rmxn

is a document, where there are m distinct words across all documents. The
documents are stemmed and the stop words are removed.
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Figure 5.18: Precision, Recall and F-measure for the cosine graph sim-
ilarity measure. Blue line: precision, green line: recall, red line: F-measure
as a function of threshold θ. Dotted: before extension with synonyms; solid:
after extension.

We want to factorize the matrix X into two matrices, D = [d1,d2, . . . ,dn]
and A = [α1,α2, . . . ,αn], where D, the dictionary contains the basis vectors
or topics, and A contains the coe�cients in the linear combination of each
document: x1 ≈ D∗α1, x2 ≈ D∗α2, and so on. In matrix notation: X ≈ D∗A.

Furthermore, we impose a structure on the elements (columns) of the dic-
tionary D. Each di is embedded in a structure G = {I1, I2, . . . , In}, where each
Ii ⊆ {1, . . . , n}] represents the neighbors of di. For example, if I1 = {1, 2, 3},
then the �rst column and the next two are neighbors.

We want to solve

fn(D) =
1

n

n∑
i=1

lκ,η,G(xi,D), (5.22)

Where

lκ,η,G(x,D) = min
α∈Rk

[
1

2
∥x−Dα∥22 + κΩG,η(α)

]
(κ > 0). (5.23)

The Ω regularizer has two purposes, in accord with [31]. It enforces sparsity
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Figure 5.19: Learning topics from documents The matrix X that contains
the documents as its columns in a Bag of Words representation is factorized into
X ≈ D ∗A. As a result, each column of D will contain a topic. Each column
αi of A contains the coe�cients for topics for the corresponding xi document
(see also Fig. 5.20). This a hypothetical example.

and the topography the columns of D are embedded in. If yG denotes the vector
where all the coordinates that are not in the set G ⊆ {1, . . . , n} are set to zero,
then

ΩG,η(y) = ∥(∥yG∥2)G∈G∥η =

[∑
G∈G

(∥yG∥2)
η

] 1
η

η ∈ (0, 1] (5.24)

If topography is not introduced and thus there are no neighbors, that is, for
all i ∈ {1, . . . , n}, Ii = {i}, and if η = 1, then the optimization task relaxes to
the l1-norm based Lasso optimization task. If neighborhoods are included and
Iis have more than a single element, then the few element choice generalizes to
few group choice. However, elements in each group αIi are subject to the ℓ2
norm and the selected groups can have dense representations. This allows us to
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Figure 5.20: Breaking down a document into topics A document xi is
analyzed as a linear combination of topics. xi is synthesized as xi ≈ D ∗αi. αi

contains a coe�cient for each topic di. αi
j tells us about the extent document

i is about topic j. This a hypothetical example.

incorporate prior knowledge about the dictionary elements (every coordinate of
α corresponds to exactly one column in D).

The other parameter of Ω is η. If η = 1, then we sparsify the αIi in l1-norm.
Decreasing η leads to more aggressive sparsi�cation.

In matrix notation, our task is to solve the following optimization problem:

Jλ,κ,η,G(D,L) =

[
1

2
∥X−DL∥2F + κΩG,η(L)

]
→ min

D∈C,L∈Rk×n
, (5.25)

We imposed additional constraints on D and A. For every element dij of
D, dij ≥ 0. Also, for every element αij of A, αij ≥ 0. We represent topics in a
mixture of topics model: every word can only contribute positively to a topic,
and every topic can only contribute positively to a document. So the problem
we are solving is a nonnegative matrix factorization problem. There is also a

normalization constraint on D: for every di (i ∈ {1, . . . , n}),
m∑
j=1

dij = 1.

It is a relevant development in our other project that our iterative learning
algorithm is online: it can process the xi-s one-by-one. This is a tremendous
advantage compared to batch algorithms: our memory footprint is decreased
tremendously, as we do not have to keep the whole X matrix in memory.
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The algorithm learnsD andA simultaneously. It is very similar to Algorithm
1 in [43], with the following di�erence. In one iteration, there are two main steps:

1. We optimize the αt hidden representation for the current xt input using
the Dt − 1 obtained in the previous iteration.

αt = arg min
α∈Rk

[
1

2
∥xt −Dt−1α∥22 + κΩG,η(α)

]
(5.26)

2. We update Dt − 1 using the previous {αi}i=1,...,t

f̂t(D) =
1

t

t∑
i=1

[
1

2
∥xi −Dαi∥22 + κΩG,η(αi)

]
→ min

D∈C
(5.27)

The algorithm works with mini-batches: it processes k inputs in an iteration,
where k is a parameter.

5.5.2 Experiments

We conducted experiments on pages uniformly sampled from Wikipedia. We
have experimented with the following topography. The topics are placed on a
hexagonal grid on a torus. Every αi has exactly 6 neighbors (Fig. 5.21.
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Figure 5.21: The hexagonal grid the topics are embedded in. Each
coe�cient in α represents the contribution of a topic to a document. Each αi

has exactly six neighbors. For example, the neighbors of α6 are α1, α2, α3, α7,
α10, α5. The grid is placed in a torus, e.g., α1 and α9 are neighbors.

We used 10,000 documents fromWikipedia, and kept all words that occurred
at least 10 times in the corpus. The words were stemmed. We placed the topics
on a 20 by 20 grid, so the dimension of α was 400. We set κ to 2−10 and η to
0.9. The learning rate ρ was 1. The size of the minibatches, k, is 16. Out of
the 400 topics, 70 contained more than 5 nonzero elements (or, in our context,
words). Table 5.5 contains 40 average-sized, Table 5.6 contains all of the larger
topics.
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It can be seen even from these preliminary results that all of the topics are
meaningful. In the future, we plan to reduce the sparsity of the topics, and also
improving their embedding in the topography. Sparsity of the topics could be
reduced for example by separating the typical and speci�c information in the
documents using RPCA, and then analyzing the typical information.

These results open up new, exciting possibilities in nearly all aspects of our
project. The meaning of texts can be determined with more precision if we
know the topic of the text. The dialog system can work much more e�ciently
if we know the topic of the question. But the most immediate and important
application is to analogy detection. It can be made much simpler and more
robust, without dependence on the link structures or information cascades.

5.5.3 Detecting analogies based on topics

When we have successfully identi�ed the topics a document is about, we can
�nd analogies in the following way. We look for sets of topics that co-occur
frequently, or associations between topics. Identifying these is a well-studied
problem in data mining, beginning with [2]. There are e�cient algorithms for
these tasks. It is natural to connect them with sparse representations, as their
input vectors are typically very sparse: 20-30 nonzero elements in vectors of
dimension 105 � 106 is considered typical.

In our problem, we have the αi-s as input vectors (i.e., the transactions),
and we are looking for associations between its coordinates (i.e., the item set),
or co-occurring sets of coordinates of αi. Each coordinate j of αi represents
the degree in which document i belongs to topic j. So we are looking for topics
that co-occur frequently in documents, or association rules between topics.

We can detect the following analogies:

1. Topics that co-occur frequently. Consider an example with two topics.
One of the topics could be about an actor, the other about a movie. If
these two occur together frequently, it is very likely that the actor acts in
the �lm.

2. Entailment: the presence of one topic frequently implies the presence of
another. This is similar to co-occurrence, only not symmetric. Consider
the following example. Our corpus involves lots of movies in a longer time
period, and if a movie is mentioned, the director is often also mentioned.
If there is a mention of the director, there will be no single �lm that
stands out, because there are several �lms he has directed. In this case,
the movie entails one director, but a director entails several movies. We
can �ll in the consequent (e.g., Who has been involved with the �lm?),
the antecedent (e.g., What �lms has Mr. X. directed?) or both (e.g., In
addition to �lm Z., what has Mr. X directed?). This is a way to �nd
analogies in connection with a prede�ned topic.

Using analogies is very similar in all cases. We look for documents in each of
the topics of the analogy, then combine them. In the example of co-occurrence,
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Topic number Words in the topic
1 perform includ map galileo project peter eden cartograph evm
2 problem theori mathemat solv mathematician
3 year relat nation pari govern french territori franc
4 william emperor duke frederick prussia
5 separ respons solid �lter particl �ltrat
6 year time plai game score leagu team player
7 relat includ intern state nation polit govern presid countri
8 control game system consol atari
9 �ll color code node algorithm pixel freenet
10 english ndash singer french footbal actress player
11 parti major member power polit govern presid elect minist parlia-

ment prime
12 year gener member product oper servic compani telephon
13 time perform includ plai work instrument compos music record

song
14 soviet afghanistan kabul afghan khan
15 year birth peopl male femal live popul rate total nation ethnic

countri est
16 year time includ intern nation world countri
17 gener nation command forc armi defenc militari
18 year plai home win record leagu club season team
19 �ight hijack fbi hanjour mihdhar
20 year includ part nation british centuri island sea south land isl
21 sound modul synthesi signal frequenc carrier harmon hertz
22 research school student univers hall scienc institut colleg
23 form structur bond hydrogen ion molecul coval
24 structur element energi atom chemic moselei hydrogen molecul
25 diseas medic physician ancient centuri medicin galen hippocrat

hippocr
26 central pacif gosford salvador hondura
27 year time centuri son king death kingdom henri reign
28 develop inform time gener includ system oper
29 step left danc kelli countri dancer
30 refer form word english mean
31 goal score leagu club footbal cup
32 year time show televis converg charact episod seri releas star sum
33 year time life publish work art
34 classic text chines tao ching
35 templ period greek centuri hera golden egyptian ephesu delphi
36 cycl power e�ci heat fuel engin jet combust
37 canadian dai compani canada macdonald
38 roman holi christian orthodox cathol church council bishop saint

christ
39 protein water reaction fat acid carbon fatti carboxyl ester hy-

drolysi
40 gener includ base oper state servic war command forc unit navi

air �ghter missil

Table 5.5: Average sizes topics
The topics are is embedded in a 20 by 20 hexagonal grid on a torus. We show
40 topics of average size. It can be seen that all of the topics are meaningful.

110



Topic number Words in the topic
1 peopl time cultur histori event centuri great historian histor reli-

gion republ herodotu
2 region part river water sea north south land west countri road

plain border mountain lake �ow indu
3 peopl time number gener form includ group call member subgroup

element isomorph homomorph
4 develop control product oper state design servic �y wing unit

air isbn �ight phantom aircraft engin pilot carrier �ghter radar
squadron

5 year independ member execut nation court assembl repres power
polit govern constitut branch presid vote elect minist parliament
council prime legisl

6 refer develop languag peopl number gener form includ word pro-
gram standard centuri origin dialect spoken linguist speaker vowel

7 form imag contribut onlin energi commerc count microscop elec-
tron ion ionic valenc quantum

8 year time live singl perform plai group rock featur member music
album record song band releas tour chart guitar

9 inform time program problem network work univers scienc machin
code comput softwar algorithm

10 point product set complet analysi space linear launch topolog vec-
tor theorem hausdor� tsiolkovski

11 year peopl time popul includ area locat part state nation school
univers centuri citi center town

12 refer time number gener line includ factor neg call standard numer
set posit imaginari letter prime digit

13 refer peopl time call tradit greek centuri son god goddess human
worship jewish christian origin religion jesu faith

Table 5.6: Larger topics from an experiment on a hexagonal grid
The topics are is embedded in a 20 by 20 hexagonal grid on a torus. We show
all 13 of the larger topics. It can be seen that all of the topics are meaningful.
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we do the following. On one hand, we look for documents that contain the topic
about the actor. On the other hand, we look for documents about the �lm.
If we �nd both, we can match them, and ask questions like `What will be the
consequence of canceling the �lm on the career of the actor?'. The other cases
are similar, only we use the obtained documents in a di�erent way.

Obtaining documents with speci�c topics is very fast, as the topical repre-
sentation (i.e., the αi-s) of the documents can also be stored in an inverted
index using Lucene.

5.6 Learning a topography of topics

In the previous semester, we have successfully broken down documents into
topics, but our preliminary results could be improved upon. The topics were
largely independent, and they were very sparse. In this semester, we have �ne-
tuned our algorithm to establish topography between denser topics. The topics
are embedded in a topography, where topics that are near each other are more
similar than topics that are further apart. In the following, we �rst revisit the
algorithm, then we describe the modi�cations and the new results.

5.6.1 The original algorithm

Dictionary learning algorithms learn basis vectors that capture high-level
features of unlabeled data. They model each input vector as the linear combi-
nation of a few basis vectors. We use sparse coding to break documents down
into topics. In our case, the input vectors are Bag of Words representations
of documents. Each column of the input matrix X = [x1,x2, . . . ,xn] ∈ Rmxn

is a document, where there are m distinct words across all documents. The
documents are stemmed and the stop words are removed.

We want to factorize the matrix X into two matrices, D = [d1,d2, . . . ,dn]
and A = [α1,α2, . . . ,αn], where D, the dictionary contains the basis vectors
or topics, and A contains the coe�cients in the linear combination of each
document: x1 ≈ D∗α1, x2 ≈ D∗α2, and so on. In matrix notation: X ≈ D∗A.

Furthermore, we impose a structure on the elements (columns) of the dic-
tionary D. Each di is embedded in a structure G = {I1, I2, . . . , In}, where each
Ii ⊆ {1, . . . , n}] represents the neighbors of di. For example, if I1 = {1, 2, 3},
then the �rst column and the next two are neighbors.

We want to solve

fn(D) =
1

n

n∑
i=1

lκ,η,G(xi,D), (5.28)

Where

lκ,η,G(x,D) = min
α∈Rk

[
1

2
∥x−Dα∥22 + κΩG,η(α)

]
(κ > 0). (5.29)

The Ω regularizer has two purposes, in accord with [31]. It enforces sparsity
and the topography the columns of D are embedded in. If yG denotes the vector
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Figure 5.22: Learning topics from documents The matrix X that contains
the documents as its columns in a Bag of Words representation is factorized into
X ≈ D ∗A. As a result, each column of D will contain a topic. Each column
αi of A contains the coe�cients for topics for the corresponding xi document
(see also Fig. 5.23). This a hypothetical example.

where all the coordinates that are not in the set G ⊆ {1, . . . , n} are set to zero,
then

ΩG,η(y) =
∥∥(∥yG∥2)G∈G

∥∥
η
=

[∑
G∈G

(∥yG∥2)
η

] 1
η

η ∈ (0, 1] (5.30)

If topography is not introduced and thus there are no neighbors, that is, for
all i ∈ {1, . . . , n}, Ii = {i}, and if η = 1, then the optimization task relaxes to
the l1-norm based Lasso optimization task. If neighborhoods are included and
Iis have more than a single element, then the few element choice generalizes to
few group choice. However, elements in each group αIi are subject to the ℓ2
norm and the selected groups can have dense representations. This allows us to
incorporate prior knowledge about the dictionary elements (every coordinate of
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Figure 5.23: Breaking down a document into topics A document xi is
analyzed as a linear combination of topics. xi is synthesized as xi ≈ D ∗αi. αi

contains a coe�cient for each topic di. αi
j tells us about the extent document

i is about topic j. This a hypothetical example.

α corresponds to exactly one column in D).
The other parameter of Ω is η. If η = 1, then we sparsify the αIi in l1-norm.

Decreasing η leads to more aggressive sparsi�cation.
In matrix notation, our task is to solve the following optimization problem:

Jλ,κ,η,G(D,L) =

[
1

2
∥X−DL∥2F + κΩG,η(L)

]
→ min

D∈C,L∈Rk×n
, (5.31)

We imposed additional constraints on D and A. For every element dij of
D, dij ≥ 0. Also, for every element αij of A, αij ≥ 0. We represent topics in a
mixture of topics model: every word can only contribute positively to a topic,
and every topic can only contribute positively to a document. So the problem
we are solving is a nonnegative matrix factorization problem. There is also a

normalization constraint on D: for every di (i ∈ {1, . . . , n}),
m∑
j=1

dij = 1.

It is a relevant development in our other project that our iterative learning
algorithm is online: it can process the xi-s one-by-one. This is a tremendous
advantage compared to batch algorithms: our memory footprint is decreased
tremendously, as we do not have to keep the whole X matrix in memory.

The algorithm learnsD andA simultaneously. It is very similar to Algorithm
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1 in [43], with the following di�erence. In one iteration, there are two main steps:

1. We optimize the αt hidden representation for the current xt input using
the Dt − 1 obtained in the previous iteration.

αt = arg min
α∈Rk

[
1

2
∥xt −Dt−1α∥22 + κΩG,η(α)

]
(5.32)

2. We update Dt − 1 using the previous {αi}i=1,...,t

f̂t(D) =
1

t

t∑
i=1

[
1

2
∥xi −Dαi∥22 + κΩG,η(αi)

]
→ min

D∈C
(5.33)

The algorithm works with mini-batches: it processes k inputs in an iteration,
where k is a parameter.

5.6.2 The modi�cations to the algorithm

The modi�cations of the algorithms concern the three constraints. The two
constraints imposed on the elements of D and A (i.e., every dij ≥ 0 and every
αij ≥ 0) were dropped. So the matrix factorization is no longer a nonnegative
matrix factorization. The reason for this change was practical: the speed of
the algorithm can be signi�cantly improved, without signi�cant change to the
results. Even without these constraints, most of the elements dij and αij are
positive, so the results do not change.

The second change is more signi�cant. We change the normalization con-
straint on D: for every di (i ∈ {1, . . . , n}), ||di||2 = 1. Instead of using the l1
norm, we use the l2 norm. Because of the l2 norm, the topics can be more dense
than with the l1 norm. The denser topics allow a topography to be formed,
because there are much more nonzero coordinates where topics can overlap.

Results with the new algorithm

We conducted experiments on pages uniformly sampled from Wikipedia. We
have experimented with the following topography. The topics are placed on a
hexagonal grid on a torus. Every αi has exactly 6 neighbors (Fig. 5.24).
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Figure 5.24: The hexagonal grid the topics are embedded in. Each
coe�cient in α represents the contribution of a topic to a document. Each αi

has exactly six neighbors. For example, the neighbors of α6 are α1, α2, α3, α7,
α10, α5. The grid is placed in a torus, e.g., α1 and α9 are neighbors.

The hexagonal grid is 20-by-20. A 6-by-7 part of this topography is shown
on Fig. 5.25. The topics remained well-de�ned, and now they are embedded in
a topography.
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Figure 5.25: The results of the new, re�ned algorithm. The �gure shows
a part of the topography Online Structured Dictionary Learning generated from
a set of documents. Each of the topics are represented by the three words with
the largest weights. The colors were assigned to the nodes manually to visualise
broad topics. It can be seen that topics that belong to the same broad topic are
near each other. Please note that the words are stemmed.
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5.7 Interpreting text fragments

In the previous semester, we started analyzing the content of documents
by breaking them down into topics. In the �rst phase of this semester, we
improved our algorithm to assign a topography of topics to a set of documents.
In the second phase, we have taken this notion one step futher: we introduced
topographies of sense-topics that can model the content of single documents, or
smaller text fragments.

This new model of documents combines the background knowledge of
Wikipedia with the topic topographies we can generate with OSDL to interpret
text fragments. The interpretation is a topography of sense-topics. Sense-topics
are sense vectors that determine a broader concept or topic. Each word in the
text fragment is represented by a combination of these sense-topics embedded
in the topography.

The algorithm that generates a topography of sense-topics for a set of words
W is an application of Online Structured Dictionary Learning (Sec. 5.6.1) on
ESA vectors (i.e., sense vectors that ESA assigns to words). The columns of
the matrix X the algorithm factorizes is �lled with the vectors ESA assigns to
each word w ∈W . After running the OSDL algorithm on this matrix X, we D
will contain a topography whose topics consist of senses, and αi contains the
sense-topic representation of the ith word. (Fig. 5.26)
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Figure 5.26: Topography of sense-topics The columns of the matrix X on
the left side contains ESA vectors of words. In this example, the words are from
the sentence �A mouse is a small mammal belonging to the order of rodents.�.
The matrix is factorized using OSDL, X = DA. The columns of D contain the
sense-topics of the topography on the right side. The columns of A, αi contain
the sense-topic representation of each word. On the �gure, the arrows starting
from the word �mouse� denote such a representation.

In the next section, we describe the algorithm that generates a sense topog-
raphy from a collection of words, then we review the two applications we already
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explored with good results. The �rst application decomposes the sense vectors
ESA assigns to words according to meaning using the fact that each individ-
ual word is represented by a collection of sense-topics. The second application
interprets text fragments by �nding the most important sense-topics in the text.

5.7.1 Breaking down sense vectors by meaning

Explicit Semantic Analysis assigns sense vectors to words that consist of all
the possible meanings of a word. This property of ESA makes it unsuitable
to di�erentiate between di�erent meanings of the same word, and, at the same
time, makes it less precise.

In the �rst application of our topography of sense-topics, we separate the
di�erent meanings of sense vectors assigned to words by ESA. We work with a
collection of independent words (i.e., the words that are not part of the same
text fragment), and put their ESA vectors into the columns of the matrix X,
then factorize this matrix into X = DA using OSDL. (Fig. 5.27) The resulting
sense-topics mirror the di�erent meanings of the ESA vectors. It is preferable
to choose the words such that the di�erent meanings are spread across them.
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Figure 5.27: Breaking down sense vectors according to word senses. The
ESA vectors of independent words are put into a matrix X, then this matrix is
factorized using OSDL. The resulting sense-topics mirror the di�erent meanings
of the ESA vectors. It is preferable to choose the words such that the di�erent
meanings are spread across them (e.g., the meanings of �re are contained in the
words, �bullet�, �job�, etc.

The jth coordinate of αi contains the association strength between the ith
word in the matrix and the jth sense topic, and dj contains the corresponding
topic. Let Ji denote the set of nonzero coordinates of αi

Ji = {j|αi
j ̸= 0} (5.34)

118



As αi is sparse, J has a small number of elements. There are cases where
αi is not sparse, but it is compressible. In this case we de�ne Ji to contain the
indices of the l largest values of αi, where l is the number of sense vectors we
want to decompose αi into. The sense vectors in the decomposition of the ESA
vector xi are the elements of the set

{dj |j ∈ Ji} (5.35)

Algorithm 2 (Breaking down sense vectors according to meaning)

1: Input: A matrix X ∈ Rm×n of ESA vectors, X = [x1,x2, . . . ,xn]
2: Factorize X with OSDL: X = DA, D = [d1,d2, . . . ,dk] contains the sense-

topics in the topography, A = [α1,α2, . . . ,αn], k is the number of sense-
topics

3: for i = 1, 2, . . ., n do
4: Ji = {j|αi

j ̸= 0}
5: DECOMPi = {dj |j ∈ Ji}
6: end for
7: Output: The decompositions DECOMPi for each word.

An example: decomposing the ESA vector of the word ��re�

In the following, we demonstrate the algorithm on a concrete example. We
decompose the ESA vector of the word ��re� into three meanings:

• the phenomenon of combustion manifested in light, �ame, and heat

• the �ring of weapons

• to dismiss from a position

Fig. 5.28 shows the coe�cients in αi, where i is the column the word �re
is in, sorted in ascending order. It can be seen, especially from the �gure that
only shows the largest coe�cients, that there are only three that are not zero.
Table 5.7 shows the sense-topics these three coe�cients are associated with.
They describe the three di�erent meanings of the word ��re�.

5.7.2 Assigning sense vectors to text fragments

Explicit Semantic Analysis assigns sense vectors to text fragments by averag-
ing the ESA vectors of all the words in the text. As the ESA vectors contain all
the meanings of a word, when we average these vectors, the result will not only
represent the meaning of the text, but also alternative meanings based on the
other meanings of the words. As the number of words increases, the meaning
of the text becomes less and less precise.
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Figure 5.28: The coe�cients in αi. The �gure shows the coe�cients in αi,
where i is the column the word �re is in, sorted in ascending order. It can be
seen, especially from the �gure that only shows the largest coe�cients, that
there are only three that are not zero.

Flame Shoot Dismiss from a position
Chronology of Provisional. . . United States Marine. . . History of private equity. . .
List of shipwrecks Advanced Landing Ground Private equity in the. . .
List of accidents and. . . Eighth Air Force Hedge fund
List of illuminated. . . United States Air Force Mado� investment scandal
List of accidents and. . . USS America (CV-66) Subprime mortgage crisis
List of accidents and. . . 101st Airborne Division Youth Criminal Justice. . .
330th Bombardment. . . USS Beale (DD-471) Emergency Economic. . .
United States Marine. . . RAF Alconbury Enron scandal
List of maritime disasters Battle of Jutland Income trust
USS America (CV-66) Battle o� Samar Financial crisis of. . .

Table 5.7: The three sense-topics associated with nonzero coe�cients.
They contain concepts that are related to the three di�erent meanings of the
word ��re�.
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The topography of sense-topics allows us to deal with this problem, and
assign a more precise sense vector to a text fragment that contains less super�ous
senses.

We put the ESA vectors of all the non-stopwords in the text into the columns
of the matrixX, then factorize this matrix intoX = DA using OSDL. We choose
the most signi�cant sense-topics as follows. First, we obtain a single vector by
summing the coe�cients of all the αi

α =
n∑

i=1

αi (5.36)

The vector α shows how signi�cant each of the sense-topics is: αj is the
signi�cance of the jth sense-topic in the text fragment. We obtain the sense
vector by choosing the l most signi�cant sense-topics, and averaging them. If
we let J to contain the index of the l largest values of α, where l is a parameter,
then

s =

∑
i∈J

di

|J |
(5.37)

Algorithm 3 (Assigning sense vectors to text fragments)

1: Input: A matrix X ∈ Rm×n that contains the ESA vectors of the words
in the text fragment, X = [x1,x2, . . . ,xn], l, the number of sense-topics we
use in the construction of the sense vector

2: Factorize X with OSDL: X = DA, D = [d1,d2, . . . ,dk] contains the sense-
topics in the topography, A = [α1,α2, . . . ,αn], k is the number of sense-
topics

3: α :=
n∑

i=1

αi

4: let J to contain the indices of the l largest values of α

5: s :=

∑
i∈J

di

|J|
6: Output: s, the sense vector associated with the text fragment

Results

We have tested the performance of the algorithm an article titled �Hubble
Finds Granddaddy of Ancient Galaxies�, attached in the Appendix (Sec. 5.7.3).

The convergence of the algorithm can be seen on Fig. 5.29. The two �gures
show the change in D,

||Dt −Dt−1||2F (5.38)
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, and the average reconstruction error,∑
i∈processedindices

||xi −Dαi||2

|processedindices|
(5.39)

, as the algorithm progresses. It can be seen that the D changes less and less,
and that the reconstruction error decreases as the algorithm progresses.

(a) Change in D (b) Reconstruction error

Figure 5.29: The algorithm converges. The two �gures show the change in D,
and the average reconstruction error, as the algorithm progresses. The number
of minibatches is on the horizontal axis. It can be seen that the D changes less
and less, and that the reconstruction error decreases as the algorithm progresses.

The topography and the most important sense-topics are illustrated on
Fig. 5.7.2, and on Table 5.8. The numbering of the sense-topics are the same
on both the table and the �gure. The 1st sense topic is the most signi�cant
(i.e., it has the largest weight in α), and so on. From the �gure, it can be seen
that the topics are concentrated in clusters, but the topics that describe the
article best (the 1st and the 7th topic) are not clustered more closely than the
other topics. We are currently in the process of running experiments to achieve
this separation, thereby obtain even more accurate sense vectors for the text
fragments (Table 5.9).

The sense vectors of ESA and our method are compared in Table 5.10. The
senses are numbered according to their signi�cance. Only the 20 most signi�cant
senses are shown. It can be seen that in our method, the �rst �ve most signi�cant
senses are correct, whereas in ESA, only two of them are. Among others, we
have successfully �ltered out the irrelevant senses about tea.
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Topic number Senses in the topic

1 Milky_Way Galaxy Atlas_of_Peculiar_Galaxies Spiral_galaxy
Dark_matter

2 Paper_size Largest_organisms Perceived_visual_angle
Depth_of_�eld File_Allocation_Table

3 Dark_matter The_Dark_Tower_(series) Af-
ter_Dark_(TV_series) Eisner_Award Dark_Bring

4 Jumanji_(TV_series) Poker_probability_(Omaha) Coach_Trip
Academic_term History_of_the_Kansas_City_Chiefs

5 Varese_Sarabande Euclidean_algorithm Classic_Hits_FM
Queen_(band) The_Miracles

6 History_of_wood_carving American_Beauty_(�lm) Or-
son_Welles Aesthetics Florence

7 Hubble_Space_Telescope History_of_the_telescope Hub-
ble's_law Optical_telescope Lovell_Telescope

8 BKL_singularity Electron Hindu_chronology Babe_Carey
Ganymede_(moon)

9 Shift_work Manual_transmission
High_German_consonant_shift
British_Columbia_Ambulance_Service
Ages_of_consent_in_North_America

10 Carburetor Oil_tanker Tide Natural_gas Natural_gas_storage

Table 5.8: The 10 most signi�cant sense-topics, in order of signi�cance
We only show the �rst �ve most signi�cant senses in each topic. The �rst and
seventh topics are the most relevant to our article.
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1st sense-topic 7th sense-topic
Milky_Way Hubble_Space_Telescope
Galaxy History_of_the_telescope
Atlas_of_Peculiar_Galaxies Hubble's_law
Spiral_galaxy Optical_telescope
Dark_matter Lovell_Telescope
Andromeda_Galaxy Great_Observatories_program
Chronology_of_Star_Wars Astronomy_in_medieval_Islam
Hubble_sequence Telescopic_sight
Galaxy_formation_and_evolution Hubble_Deep_Field
Rare_Earth_hypothesis Hubble_sequence
Non-standard_cosmology Amateur_astronomy
Space_science Redshift
Globular_cluster Eyepiece
Black_hole Observational_astronomy
Gart_Westerhout History_of_Mars_observation
Places_in_The_Hitchhiker's_Guide_to_the_Galaxy Galaxy
Astronomy Mills_Observatory
Big_Bang Astronomical_seeing
Future_of_an_expanding_universe Nicholas_Mayall
Ancient_(Stargate) History_of_astronomy

Table 5.9: The two most relevant sense-topics.
The table shows the two sense-topics that are most relevant to the article.
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Standard ESA Our method
1 Tea Milky_Way
2 Hubble_Space_Telescope Hubble_Space_Telescope
3 Galaxy Chronology_of_Star_Wars
4 Tea_culture Galaxy
5 Licensed_and_localized_editions_of_Monopoly Dark_matter
6 Glossary_of_cue_sports_terms Jumanji_(TV_series)
7 California_locations_by_per_capita_income Escapement
8 Milky_Way Gart_Westerhout
9 Helium Hot_dog_variations
10 Dark_matter Atlas_of_Peculiar_Galaxies
11 Globular_cluster Non-standard_cosmology
12 Timeline_of_United_States_inventions Star
13 Santa_Cruz,_California Extrasolar_planet
14 Pu-erh_tea Hubble's_law
15 Star Iggy_Pop
16 Atlas_of_Peculiar_Galaxies Galaxy_formation_and_evolution
17 Big_Bang Black_hole
18 History_of_the_telescope Timeline_of_United_States_discoveries
19 Visual_acuity Donna_Summer
20 NORAD_Tracks_Santa Globular_cluster

Table 5.10: The sense vectors assigned to the article by ESA and our
method.
The senses are numbered according to their signi�cance. Only the 20 most
signi�cant senses are shown. It can be seen that in our method, the �rst �ve most
signi�cant senses are correct, whereas in ESA, only two of them are. Among
others, we have successfully �ltered out the irrelevant senses about tea.
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Figure 5.30: The position of the ten most signi�cant sense-topics on
the topography. The topography is a 20-by-20 hexagonal grid on a torus.
The ten most signi�cant topics are colored green, and they are numbered in the
order of signi�cance. These topics are detailed in Table 5.8. It can be seen that
the topics are concentrated in clusters, but the topics that describe the article
best (the 1st and the 7th topic) are not clustered more closely than the other
topics.

5.7.3 The article we analyze in Sec. 5.7.2 � Hubble Finds

Granddaddy of Ancient Galaxies

Somewhere out in the void - about 13.2 billion light-years away, give or take
- is a magni�cent red blob that was recently discovered by the Hubble Space
Telescope. It's a galaxy - or at least it was; it has long since �ashed out of
existence - but it is far less beautiful or dramatic than nearly any galaxy the
Hubble has spotted before. Its magni�cence, instead, comes from its age.

The newly discovered star cluster - a hundred times smaller than our Milky
Way - was formed just 480 million years after the 13.7 billion-year-old universe
was born, making it the oldest galaxy ever found. As such, it provides as-
tronomers with a �rst-time glimpse at the universe in its R&D phase, when
small, sloppy galaxies were being formed out of hot gas, only to vanish shortly
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afterward - leaving the skies free for the huge and mature galactic swirls that
would come along later. (See "The Hubble Space Telescope's Greatest Hits.")

Reported in this week's edition of Nature, the galaxy - known, unpoetically,
as UDFj-39546284 - had long escaped the Hubble's gaze, and that's no wonder.
Even at its best, the 20-year-old telescope never had the acuity to peer so far into
space, where the rapid expansion of the universe causes light waves to shift to a
deep red. It was only after Hubble's May 2009 upgrade that its Ultra Deep-Field
Infrared imager went online. Ultra-deep infrared is exactly what was needed to
spot something like UDFj-39546284, but even then, it took about 100 hours of
observing time spread across the summers of 2009 and 2010 for the galaxy to
be fully visually resolved.

When it was, the �ndings revealed a lot. The galaxy - or mini-galaxy, as
NASA is calling it - is thought to have been just 100 million to 200 million
years old when its light began the 13.2 billion light-year journey to Hubble's
lens. Its size, shape and the era in which it formed all suggest that it began its
life as a mass of gas trapped in a pocket of dark matter - a little like a slosh of
tea pooling in the depression of a saucer. (See pictures of �ve di�erent space
programs.)

"We're peering into an era where big changes are afoot," says astronomer
and astrophysicist Garth Illingworth of the University of California, Santa Cruz,
a co-author of the paper.

The changes were big indeed, but they unfolded slowly. In those early days,
stars took about 10 times as long to form as they did in later epochs. When
they did form, they were typically part of the blue star class - huge, extremely
hot stars, heavy on helium, oxygen and nitrogen. Blue stars are fuel gluttons,
lasting only a few million years before ending their lives in massive explosions.
(See a brief history of the Hubble Space Telescope.)

It would not be long before stabler, faster-forming stars began popping into
being in much larger galaxies as the universe rapidly cooled. Between 480 million
and 700 million years after the Big Bang - when UDFj-39546284 was still in the
skies - star formation accelerated tenfold. It was then when spiral galaxies and
the other glorious formations that de�ne the modern universe appeared.

Just what forces drove those changes are not certain. Hubble has a lot more
stargazing to do before more answers are revealed - and a lot more already-
gathered images of thousands of other galaxies to analyze. Better still will be
the information that comes from the long-awaited James Webb Space Telescope,
the Hubble follow-on, which is slated for launch in 2015. (See the top 10 scienti�c
discoveries of 2010.)

"If we go a little bit further back in time, we're going to see even more dra-
matic changes," promises Illingworth, "closer to when the �rst galaxies were just
starting to form." Not far beyond that lies the dawn of the cosmos themselves.
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Chapter 6

Progress in interpreting words

6.1 Translating words to Wikipedia senses

6.1.1 Encyclopedic knowledge - Wikipedia

Wikipedia [62] was launched in 2001 by J. Wales and L. Sanger. Today,
Wikipedia is one of the largest encyclopedia of the world. It has 3 million arti-
cles in English written in a collaborative manner. Volunteers around the world
edit the content of Wikipedia. Although precision of Wikipedia is debated by
some and the coverage may not be properly balanced, it is a huge representa-
tion of human knowledge and associations. One recent study [24] even found
Wikipedia's accuracy to rival that of Encyclopedia Britannica.

One can consider a page in di�erent ways. Clearly, every page is about a
particular subject, for example, about the Black-Scholes equation of �nance. At
the same time, many of the pages are about particular word senses, e.g., there
is a page about a bar in the establishment sense, there is one about bar as the
counter, etc.

Somehow, these two ends, namely the description of a mathematical con-
struct and the description of word senses everyone knows have many things in
common on the Wiki pages. Almost all page contains a summary, the history of
the word / phrase / expression, and a detailed description of the concept behind
the word / phrase / expression. From the point of view of single words that
may have di�erent meanings, Wikipedia pages distinguish the `senses'. This
sense description is much richer (but less precise) than that of WordNet, a lexi-
cal database for the English language (http://wordnet.princeton.edu/). We
can thus identify a concept or word sense with a page in Wikipedia. From now
on, a Wikipedia page will be called concept or sense, interchangeably.

Another aspect of Wikipedia is its potential in dialogue systems. Except for
the Wikipedia pages themselves, it is rare that a text fragment is strictly about
a sense. It is however possible to map a text fragment to Wikipedia senses and
to characterize the text by some weights of the Wikipedia senses. Then, having
these weighted senses, one can search the database for texts having similar
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weighted senses and can use that information for asking or answering questions.
This type of machine conversation resembles the Chinese room example (http:
//plato.stanford.edu/entries/chinese-room/) of Searle, meant to argue
against the possibility of true arti�cial intelligence. In essence, we incorporate
Wikipedia into our conversation engine to validate the topic of conversation.
Details on the utilization of Wikipedia are described below.

The SenseGraph representation

One of the main obstacles of natural language processing is that the same
concepts can be described in entirely di�erent words. In the previous semesters,
we experimented with various graph representations of texts. In these graphs
the vertices represent the words of the texts, and the edges may represent gram-
matical, lexical, or semantic connections between them.

However, representing texts with words has some drawbacks, because:

• Multiple words can have the same thing (in case they are synonyms).

• A single word can mean multiple things (called polysemy).

In order to overcome the `translation' problem amongst di�erent domains, we
altered these representations: the vertices of the graphs were changed. Instead
of representing words, we changed them to senses. This transformation � if done
properly � has the following advantages:

• It eliminates the synonymity-ambiguity problem, and thus � in principle �
it may improve document similarity measures. One expects to recognize
that two texts are similar, even if they use di�erent words to describe the
same thing; and vice versa, one can recognize di�erences between texts,
even if they use the same words, but in di�erent meanings.

• It makes easier to provide some background knowledge about the things
that are mentioned in the text. Note that this task seems unavoidable if
one is up to producing a human computer dialogue system.

There are a number of di�erent ways to represent one particular meaning
of a word (i.e., a sense). Perhaps the most popular one is using WordNet.
WordNet is a lexical database for the English language, which groups words
into synsets, and provides short de�nitions for them. One word can belong to
multiple synsets. However, using WordNet in our system would have several
shortcomings:

• The synsets of WordNet are very �ne-grained. For example, the word
source belongs to no less than nine di�erent synsets as a noun. The
di�erences in the meanings of these senses are so subtle, that occasionally
it is hard for ordinary people to classify a particular word of a sentence
according to these synsets. E�orts have been made to lower the �ne-
grained nature of WordNet [56].
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• There are a only small amount of sense-tagged texts available for
WordNet. SemCor (http://acl.ldc.upenn.edu/H/H93/H93-1061.
pdf, http://www.cse.unt.edu/~rada/downloads.html) is such a sense-
tagged database, and it is highly precise, but it is too small for machine
learning.

• The de�nitions of the synsets are short. They can be adequate for a human
to be able to classify words using them, but they are hardly enough for
inference by some kind of arti�cial intelligence.

Nonetheless, e�orts, like the mentioned work on merging word senses [56]
and [52], that evaluate a number of methods (http://wn-similarity.
sourceforge.net/) for measuring the relatedness of concepts in WordNet may
eventually succeed to incorporate top level human knowledge into machine eval-
uations.

WikiSenses

We took a di�erent approach and used the English Wikipedia as our source
for sense-tagging. In the last few years many papers have appeared that applied
it to a host of di�erent problems [44].

Each Wikipedia article de�nes and describes a single concept or word sense
using a hypertext document. So we can disambiguate words in documents to
Wikipedia articles denoted by WikiSenses from now on.

The �rst sentence of the article de�nes the concept in question, and the ad-
ditional sentences in the same section often provide a more detailed description
of it. A Wikipedia article links to other articles. These links link words (the
anchor texts) tagged to their WikiSenses (the articles). As an example, consider
the following sentence:

Isaac Asimov was a humanist and a rationalist.

The word humanist can be a link which points to the sense Human-
ism_(life_stance), and the word rationalist can be a link pointing to Ra-
tionalist_movement.

There are also redirect pages that link a concept to an article (which is also
a concept) . The set of concepts that are mapped to the same concept mean
the same. For example, there is a redirect from `USA' to `United States'.

Wikipedia also has disambiguation pages http://en.wikipedia.org/wiki/
Disambiguation_page#Disambiguation_pages. We used these pages as ordi-
nary pages of Wikipedia.

Wikipedia-based word sense disambiguation

We used the Semantically Annotated Snapshot of the English Wikipedia [3],
because of it is preprocessed in various ways, and so easy to use. We generated
data for machine learning from the hyperlinks of Wikipedia using the method
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described by Mihalcea [45]. We now shortly describe the method, and detail
the technical implementation.

We consider Wikipedia articles to be senses and hyperlinks to be learning
examples on which a classi�er can learn to disambiguate words. Only those
links were processed which suited some requirements. Particularly, we created
a list of permitted words. A permitted word appears at least once in WordNet
and at least three times in the British National Corpus. This way we limited
ourselves to 40,933 words.

The requirements for the links were as follows:

• Their surface forms were required to consist of a single word1.

• The lemma of this word had to be a permitted word.

• The link had to point to an existing article, whose length had to have a
text of more than 100 words.

A total of 6,704,196 links met these requirements. We extracted these links,
and made feature vectors from them. The features were:

• The article the link was pointing to (following redirects). This is the sense
we want to determine.

• The lemma of the surface form of the link.

• The parts-of-speech of the link and the surrounding words.

• A set of words which represents the context of the link. We put the lemmas
of the following words into the set:

� The words that surround the link, three to the left and three to the
right (leaving out stopwords).

� The noun and verb before and after the link (leaving out stopwords).

� The �ve most frequent non-stopwords in the whole section that con-
tains the link. We only included words that appear at least three
times in the section.

Drawbacks

While the method we used for Word Sense Disambiguation proved to be
simple, fast, and fairly precise, it also has some drawbacks, which are di�cult
to overcome:

• Wikipedia is a very large, manually annotated encyclopedia, but it fails to
represent the whole English language. A classi�er trained on Wikipedia
may fail on texts that are far from being encyclopedic.

1We intend to extend our approach to include multi-word phrases.
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• The links in Wikipedia tend to point to the correct article, but they also
to represent every sense equally. Sometimes, they are biased towards
rare senses. For example, the lemma grip has multiple meanings, such
as the common Handle_(grip) and the much rarely used Grip_(job)
(which means a lighting technician in �lm industries). In Wikipedia, when
this word is used in the sense handle, it is rarely linked, because this
meaning is trivial; but, when used as lighting technician, it is almost always
linked. Therefore, in this case training examples are severely biased, and
the classi�er tends to use the less common sense too frequently.

• The linked words in Wikipedia are mostly nouns; linked adjectives and
verbs are rare. Therefore, this method suits the disambiguating nouns.

• The links with lemma list point to more than 2500 distinct articles.
Almost all of them are Wikipedia lists, e.g., List_of_museums or
List_of_airports_in_Alberta. Therefore, the classi�er for the
lemma list is useless.

These drawbacks could be overcome, e.g., by means of combining WikiSenses
with other sense evaluation methods, such as the Explicit Semantic Analysis
method.

ESA - Explicit Semantic Analysis

Explicit semantic analysis [21,22] is a method to associate senses (=concepts
in the terminology of the authors) to words. ESA assigns a concept vector
to a word, where each concept is weighted by the strength of its association
to the word. This is a very simple and highly successful method. It can be
applied to many di�erent corpora where documents describe concepts, including
Wikipedia. They used Wikipedia as follows:

1. Each Wikipedia article is represented by a vector, where each component
corresponds to a distinct word of its text. The value of the component is
the TFIDF value of the word that � in loose terms � counts the number of
appearances of the word and divides it with the logarithm of the number of
documents in the corpus (in this case, Wikipedia) that contain the word.
Let TF (wi, d) denote the term frequency, the times of word wi occurs in
document (or article) d. Let DF (wi) denote the number of documents
that contain word wi. The TFIDF weight of the word in the document
given the database is

TFIDF (wi, d) = TF (wi, d) ∗ log
(
|D|

DF (wi)

)
(6.1)

2. For a word, the concept vector is constructed as follows. The weight of a
concept in the vector will be the weight of the word in the TFIDF vector
of the article that describes the concept.
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3. Insigni�cant associations are discarded: senses with low weights are re-
moved

Semantic relatedness of words can be measured by comparing their concept
vectors using traditional similarity measures (e.g., the cosine distance). Com-
paring documents is also possible with a slight extension.

Reconstruction networks

A twist to the above method is to consider the senses as sources that `emit'
the words according to their TFIDF values. The question is the best linear
combination of senses and thus the best linear combination of the inverted
index vectors that together reproduce (reconstruct) the TFIDF vector of the
document. It is advantageous to develop sparse representation, i.e., to diminish
small amplitude sense components from the reconstruction procedure. This
method was demonstrated in [20] and may improve the ESA results, because it
represents the document with a sense vector that would have emitted the same
TFIDF vector of the document. The reconstruction network architecture and
its relaxation equation are shown in Fig. 6.1

6.1.2 Experiments with Sensegraphs

By processing Wikipedia, we created feature vectors for 20,509 distinct lem-
mas out of which 15,054 had more than one WikiSenses. We trained a Naïve
Bayes classi�er for each of these 15,054 lemmas. The number of senses per
lemmas is shown in Fig. 6.2 in decreasing order, whereas the number of training
examples per lemma is depicted in Fig. 6.3 in decreasing order, too.

To measure the precision of the classi�ers, a 10-fold cross-validation was per-
formed. The the macro-average of the accuracies of the classi�ers was 74.41%.
Classi�ers with poorer performance had fewer learning examples (i.e., the words
appeared less frequently in the texts). The micro-average accuracy on the other
hand was 84.98%. Figures 6.4 and 6.5 show the statistics of the accuracies of
the individual classi�ers. The results clearly indicate that classi�ers with more
training examples and less senses tend to be more precise.

The number of senses actually used by the Naïve Bayes classi�ers were
surprisingly low. For the Reuters Corpus, the number of senses the classi�ers
mapped to the lemmas is depicted in Fig. 6.6.

The reason of this is twofold:

• The Reuters Corpus is very small compared to Wikipedia, and the articles
it contains are similar to each other (they are all �nancial news). Only
a fraction of the concepts that appear in Wikipedia are mentioned in the
Reuters Corpus.

• The majority of the WikiSenses appear only very few times, and the Naïve
Bayes classi�er weights the senses according to their a priori probabili-
ties, i.e., that how many times they appear. For example, the lemma
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Figure 6.1: Generative reconstruction network with sparsifying relax-
ation dynamics. The network reconstructs its input x by means of the in-
ternal representation s. It computes the pseudoinverse of long-term memory
matrix Q if dim(s) < dim(x), the multiplier of the sparsifying term β = 0. If
dim(s) > dim(x) then it sparsi�es the representation and computes representa-
tion, which cost is (a local) minimum in L1 norm

abacus has two senses (i.e., in Wikipedia, when the word abacus appears,
and it is a link, it can point one of two articles): Abacus and Aba-
cus_(architecture). We have 69 training examples for the former, but
only 7 ones to the latter. Therefore, the Naïve Bayes classi�er of lemma
abacus requires a highly similar feature vector to one of the training ex-
amples of Abacus_(architecture). Otherwise, with high probability,
the text will be classi�ed as Abacus.

6.1.3 Experiments in document categorization

We tested the e�ciency of our methods on a document categorization task,
a standard benchmark in natural language processing. The goal of this task
is to assign the correct category labels to documents from a prede�ned set of
category labels.

We conducted the experiments with two goals: we wanted (i) to determine
the utility of di�erent feature representations and (ii) to decide whether semantic
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Figure 6.2: Number of senses for each lemma in decreasing order on
log-log scale. Horizontal axis: number of lemmas ordered according to their
senses, vertical axis: the number of the senses of the lemmas. The maximal
sense number belonging to a single lemma is 2,500.
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Figure 6.3: Number of links (i.e., training examples) in decreasing
order for each lemma on log-log scale. Horizontal axis: lemmas sorted by
the number of times they appear as a link, vertical axis: the number of the links
belonging to the lemma. The maximal number of links belonging to a single
lemma is 48,879.

similarity can be inferred by graph kernels using only syntactic information.
We performed document categorization on the Reuters-21578 corpus, and

used the `ModApte' split as described in [32]. We had 9603 training 3299 test
documents. To each document there are a number of topics (category labels)
assigned.
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Figure 6.4: Average accuracies of the classi�ers according to 10-fold
cross-validation.
(a): horizontal axis: classi�ers ordered according to their number of senses
(classi�ers having the same number of senses are grouped together). Vertical
axis: average accuracy of the groups of classi�ers.
(b): horizontal axis: classi�ers ordered according to their number of training
examples (classi�ers having the same number of training examples are grouped
together). Vertical axis: average accuracy of the groups of classi�ers.

We used the k-nearest neighbor classi�er as described in [32]. We used it
as a binary classi�er; we decide for each topic t and document d whether d
belongs to t or not. At the end of the experiment we had a set of topics for each
document.

Note that we only wanted to compare feature representations, so we did
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Figure 6.5: Average accuracies of the classi�ers according to 10-fold
cross-validation. We grouped the classi�ers which have the same number of
senses and training examples. One colored point represents such a classi�er
group. The vertical coordinate of a point gives the number of senses; the hori-
zontal coordinate gives the number of training examples. The color shows the
average accuracy of the classi�ers in the group. For example, a yellow point
at coordinates Y=5, X=100 means that classi�ers which have 5 senses and 100
training examples have an accuracy of 0.75 on average.
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Figure 6.6: The number of senses mapped to lemmas in the Reuters
Corpus on log-log scale. Horizontal axis: lemmas that (i) appear in the
Reuters Corpus, (ii) have at least two di�erent senses sorted by their number
of senses assigned to them. Vertical scale: the number of senses.
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kNN - cosine kNN - dice kNN - jaccard
Bag of Words 0.758 0.761 0.765
Bag of Sense 0.756 0.762 0.764

Table 6.1: F-measures of the di�erent methods and feature represen-
tations

not perform sophisticated �ne tuning of the parameters. As a consequence, our
results are slightly lower than those in the literature, but are not �ne tuned for
a particular corpus.

We tested the bag of words (BoW) representation, and the SenseGraph
representation. For the BoW representation, we preprocessed our documents
as described in Sec. 4.2.4 except that we did not extract textual content, since
we used text �les to begin with. The SenseGraph representation was created as
in Sect. 6.1.2. The `Bag of Senses' (BoS) representation was created from the
SenseGraph after ignoring the graph structure.

We have reached the same performance with the BoS representation as with
the BoW one. This means that we could properly replace the words with their
senses, a highly desired property for `translation'. For checking, we also com-
pared the two feature representations using the SVM classi�er (Sect 4.2.4) we
used in our crawler, and obtained similar results.

A signi�cant result is that using graph kernels with only syntactic informa-
tion, we were able to achieve an F-measure of 0.654 on both word graphs and
SenseGraphs. This indicates that we can infer the topic and semantic related-
ness of documents based on their syntactic structure alone.

6.2 Interpreting words as combinations of senses

In the previous semester, we have experimented with word sense disam-
biguation. We found that many times there is no speci�c word sense that could
identify the meaning of a word. As [1] say, word senses are somewhat arbitrary.
In this semester, we have taken a more �exible approach: we do not describe
the possible meaning of words as senses �xed by a lexicographer. We describe
meaning as a combination of senses instead, where each sense can contribute to
the meaning of an individual word in the text.

This Section consists of three parts. In the �rst part, we describe the con-
cepts we use. In the second part, we describe our experiments with extending
Explicit Semantic Analysis to describe word meanings as combinations of senses.
In the last part, we propose a new architecture based on the observations of the
experiments.
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6.2.1 Motivation and preliminaries

Motivation

One of the main obstacles of natural language processing is that the same
concepts can be described in entirely di�erent words. Representing texts in the
traditional manner (i.e., with words) does not represent their meaning properly,
because:

• Multiple words can have the same thing (in this case, they are synonyms).

• A single word can mean multiple things, thus be ambiguous. (called pol-
ysemy).

In the previous semester we experimented with the creation of sense represen-
tations. This transformation � if done properly � has the following advantages:

• It eliminates the synonymity-ambiguity problem, improving document
similarity measures [21]. One expects to recognize that two texts are
similar, even if they use di�erent words to describe the same thing. One
can also recognize di�erences between texts if they use the same words,
but in di�erent meanings.

• It makes easier to provide background knowledge about the things that are
mentioned in the text. This seems necessary to build a human-computer
dialogue system.

Supervised methods

A popular way of word sense disambiguation in based on supervised learning.
For each word, a classi�er is trained to recognize the di�erent senses of that
word based on its context. The main problem with this method is the knowledge
acquisition bottleneck. For each word sense, a large number of training examples
must be created manually. In the previous semester, we created a word sense
disambiguation system based on [45]. The idea is to consider Wikipedia links
as sense-tagged training examples. However, we were not entirely satis�ed with
the method.

• In this way, we mapped at most one sense to an instance of a word in a
text. To give enough background information on a subject, more senses
might be needed.

• Moreover, we found that many times there is no speci�c word sense that
could identify the meaning of a word. Describing the meaning of a word
as a combination of senses may be more appropriate.

• Only links with one-word anchor texts could be used. The number of train-
ing examples was rather low, therefore the precision of the classi�cation
was not always satisfactory.
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In this semester, we decided to represent senses by vectors of Wikipedia
concepts instead of a single Wikipedia concept. We implemented, evaluated
and tried to improve a method called Explicit Semantic Analysis to achieve
this.

Explicit Semantic Analysis

Explicit Semantic Analysis [21,22] is a method to associate words with senses
(=concepts in the terminology of the authors). This is a very simple and highly
successful method. It can be applied to di�erent corpora, including Wikipedia.
We implemented it in the Java programming language. We now shortly describe
the method.

Basically, we build a semantic interpreter based on the TFIDF values of
the words in the corpus. The idea is that if a word appears frequently in a
document, then that document (seen as a concept) represents the meaning of
the word to some degree. For each word, a sparse vector of concept weights
is created. The more frequent the word is in a given document, the larger the
corresponding weight will be.

Let m denote the number of distinct words in the corpus, and n denote the
number of documents (i.e., the number of concepts). We construct T , an m-by-n
matrix. Its rows represent the individual words (denoted by t1, . . . , tn), and its
columns represent the concepts (whose documents are denoted by d1, . . . , dn).

Ti,j = tf(ti, dj) · log
n

dfi
,

where term frequency is de�ned as

tf(ti, dj) =

{
1 + log count(ti, dj) if count(ti, dj) > 0

0 otherwise
,

where
dfi = |{dk : ti ∈ dk}|.

After this, each column is normalized to disregard di�erences in document
length:

Ti,j ←
Ti,j√∑m
i=1 T

2
i,j

.

This method can be used for measuring document similarity through the
senses. Let w = (w1, . . . , wk) denote the words of a (k words long) document.
Let T [w] = (T1[w], . . . , Tn[w]) denote the concept vector of the word w (i.e., the
appropriate row of the previously built T matrix). Then, in [21,22] the semantic
interpretation vector c = (c1, . . . , cn)

T of document d is introduced as

cj =
k∑

i=1

Tj [wi] (j = 1, . . . , n)
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Similarity measures, such as the cosine function can then be used to establish
similarity between documents.

We used a Wikipedia XML dump from February, 2010. We did a simple
�ltering to discard disambiguation pages and articles that belong to speci�c
dates. Redirects were collected and resolved in a preprocessing step. From
the remaining articles we discarded those that were shorter than 300 words
or had fewer than 30 incoming and 30 outgoing links, to �lter out stubs and
other shorter, less signi�cant pages. After that, 200,082 concepts remained.
From each remaining article, the stopwords were removed; the remaining words
were stemmed with the Porter stemming algorithm [54]. There were 1,248,657
di�erent words in Wikipedia; we discarded those who appeared in less than 10
articles. After that, we computed the concept vectors for the 148,928 words
that remained.

6.2.2 Experiments

Although ESA has been proven successful in document classi�cation, it has
many problems.

• The concept vectors are very �ne-grained (e.g., the word `mouse' has two
main senses, but its concept vector contains thousands of concepts). To
use ESA for word sense disambiguation, a coarser representation of senses
is needed.

• The method does not disambiguate words: it associates the same vector
to the word regardless of its actual sense.

• The concept vectors contain many irrelevant concepts (albeit with low
weights).

In the following sections we describe how we attempted to overcome these prob-
lems.

Concept clustering

Explicit Semantic Analysis associates many Wikipedia concepts to each
word. To be able to represent individual senses of the word, the clustering
of these concepts seems desirable. For example, in the case of `mouse', we want
the concepts like Pointing device, Drag-and-drop and Computer acces-
sibility to belong to a cluster which represents computer mouse; concepts like
House mouse, Mickey Mouse and Rat to belong to a cluster which repre-
sents animals.

To cluster the concepts that belong to a given word, the following steps were
taken. For each concept, we created a Bag of Words representation of the corre-
sponding article. All words were stemmed with the Porter Stemmer, stopwords
were excluded. We created feature vectors from these BOW-representations,
with each component of the vector being the frequency of a word. These vec-
tors were normalized using Euclidean norm. A similarity matrix was created:
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each entry in the matrix contained the dot product of two BOW vectors. Spec-
tral clustering was applied to this matrix.

We also experimented with creating the similarity matrix using the links in
the articles in a "Bag of Links"-manner: instead of representing the articles with
the words they contained, the articles to which the links in the actual article
pointed were considered. The creation of feature vectors from these, and the
following steps were the same as in the previous case. As the results were worse
than the results with the Bag of Words representation, we do not describe them.

Spectral clustering needs the number of clusters as an explicit parameter.
We have made multiple attempts to estimate the correct number of clusters
using the multiplicity of the eigenvalue 0 of the Laplacian matrix. However,
the similarity matrix was very dense, so the multiplicity was one, showing one
big connected component of the neighborhood matrix. We tried to make the
matrix sparser, by setting all the entries to zero that were below a thresholding
parameter. The number of clusters estimated has risen as the thresholding
parameter grew, that is, the matrix grew sparser. The optimal value of the
thresholding parameter is still an open question. As spectral clustering using
di�erent number of clusters provided sensible results of di�erent resolution, we
did not pursue this direction further.

We provide the clustering results for some words. We describe the contents
of the cluster, then enumerate some examples. We also present diagrams of
the similarity matrices which were used during the clustering (Fig. 6.2.2 and
Fig. 6.2.2). To depict the structure of the matrices better, we reordered their
rows and columns according to the clustering: the documents (or concepts)
in the �rst cluster are represented by the �rst few rows and columns in the
matrix, the documents in the second cluster by the next rows/columns, and so
on. The structure of the matrix is block-diagonal. This means that documents
(or concepts) in the same cluster are indeed more similar to each other than
they are similar to documents in other clusters.

The clustering of the word `mouse':

• 2 clusters:

1. Fiction:
Mickey Mouse; Stuart Little (film); Mouse on Mars, Tom
and Jerry

2. Science and computing:
Assistive technology; Mouse (computing); Stochastic ma-
trix, House mouse; Genomic imprinting

• 4 clusters:

1. Fiction (especially Disney):
Mickey Mouse; Walt Disney; Goofy; Chip 'n Dale

2. Fiction (especially Hanna-Barbera):
Speedy Gonzales; Tom and Jerry; Spike (Tom and Jerry);
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Figure 6.7: Reordered similarity matrices of `mouse' for 2 (left) and 4
(right) clusters. These �gures show the similarity matrix of the concepts of
the word `mouse'. The components of the matrix are permuted according to the
clusterings. The block-diagonal structure of the matrices can clearly be seen.

List of Tom and Jerry Tales episodes; Stochastic matrix
(this is a �aw)

3. Computing:
Assistive technology; Personal computer hardware;
Mouse (computing); Repetitive strain injury; Diablo III

4. Biology, �ction, miscellaneous:
Mouse; Maximum life span; Embryonic stem cell; Wild
Mouse roller coaster; Stanley Mouse

Another example, the word `argument':

• 4 clusters:

1. Miscellaneous:
A Modest Proposal; Chinese room; Direct realism; Redis-
tribution (economics)

2. Computing, mathematics:
Tail recursion; Lazy evaluation; Function object; Elliptic
integral; Fréchet derivative

3. Law:
Appeal, United States courts of appeals; Compulsory vot-
ing; Trial (law); Tax protester arguments

4. Logic, paradoxes, apologetics:
Cosmological argument; Naturalistic fallacy; Proof by
contradiction, Zeno's paradoxes; Reductio ad Hitlerum

The clustering for `circuit':
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Figure 6.8: Reordered similarity matrices of `argument' (left) and `cir-
cuit' (right). These �gures show the similarity matrices of the concepts of the
words `argument' and `circuit'. The components of the matrix are permuted
according to the clusterings. The block-diagonal structure of the matrices can
clearly be seen.

• 4 clusters:

1. Racing:
Le Mans, Open wheel car; Silverstone Circuit; Calder
Park Raceway); Hockenheimring

2. US counties:
Putnam County, Florida; Limestone County, Alabama;
Brooke County, West Virginia; Boone County, Indiana;
DeKalb County, Indiana

3. Electrics:
Analog signal; Electrical network; Relaxation oscilla-
tor; Dynamic voltage scaling; Circuit rider (religious)
(this should go together with the few other Methodist church ar-
ticles)

4. Judicial division, law:
United States Court of Appeals for the District of
Columbia Circuit; Judiciary Act of 1789; Precedent; Gov-
ernment of Oregon; Methodist Church of Great Britain

Context-sensitive ESA

Explicit semantic analysis associates concept vectors to words without con-
sidering the sense of the actual instance of the word. For example, the word
`mouse' has two dominant senses: one is the rodent, the other is the computer
device. Thus, the concept vector of `mouse' contains concepts like Pointing de-
vice, Drag-and-drop or Computer accessibility as well asHouse mouse,
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Mickey Mouse or Rat, each with a high weight; moreover, we assign this same
vector to the word regardless its sense. As word senses are correlated with word
contexts (this is the foundation of most word sense disambiguation algorithms),
it would be bene�cial to let the context of the word in�uence its concept vector.

As a �rst step, we examined the possible bene�ts of a context-sensitive ESA
method by the following word sense disambiguation test:

First, we pick a polysemous target word, e.g., `mouse' or `circuit'. We have
a corpus for each target word that consists of sentences using the target word
in that particular meaning, such as `The mouse was hungry' or `He clicked with
the mouse'. We would like to create a concept vector representation for each
instance of the target word based on its context. We de�ne the context to be
a �xed-size window (i.e., the m words before, and the m words after the target
word instance). For each instance of the target word, we sum the individual
concept vectors of the words in the context (including the target word itself).
This sum is a simple context-sensitive concept vector representation. Then we
apply a kNN classi�er on these vectors see whether it is able to correctly predict
the current sense of the word. As a baseline, a simple bag of words-based kNN
is used.

Preliminary results were promising. These were based on a small sense-
tagged database collected by hand from the Internet by us. For ten ambiguous
words, we picked two senses, and collected 15-15 sample sentences for each
sense, using Google search. This way, we gathered a total of 300 sense-tagged
sentences. The results were good, but the small dataset made them a bit noisy.
(Figure 6.9 and Figure 6.10)

Figure 6.9: The e�ect of context radius in word sense disambiguation.
This diagram shows the results of kNN-based word sense disambiguation on the
small manually sense-tagged data collected by us. The horizontal axis shows
the context radius, the vertical axis shows the accuracy. The ESA-based results
show better performance than the BOW-based ones.
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Figure 6.10: The performance of kNN on the small manually sense-
tagged data for context radius of 7. This diagram shows the results of
kNN-based word sense disambiguation on the small manually sense-tagged data
collected by us. The horizontal axis shows the individual words, the vertical
axis shows the accuracy. The average accuracies were 0.71 (BOW) and 0.743
(ESA).

When performing a larger test on the training dataset of the SENSEVAL-1
English lexical sample task, no improvement over the BOW-based method was
observed. (Table 6.2.)

We came to the conclusion that our approach in creating a context-based
concept vector representation was �awed, because relying on the TFIDF data
of the individual words of the context alone is insu�cient (or at least is not
better than the much simpler bag-of words model), when disambiguating words.
Based on these experiences, we developed a new system, which will overcome
these problems. (Section 6.2.4)

6.2.3 Context vector �ltering

The concept vector for a word in Explicit Semantic Analysis contains all
concepts whose Wikipedia articles mention the given word. For example, the
concept vector of `mouse' contains 3040 concepts, such as Hyperspace (sci-
ence fiction) � albeit with a very low weight � because the article incidentally
mentions mouse pointer; the concept of hyperspace in science �ction is, however,
not relevant at all in describing the word `mouse'.

[21] describes a simple heuristic to eliminate spurious associations between
articles and words. The method sorts the concepts for the word in descending
order of their weights, and then looks for fast drops in the concept scores. The
algorithm scans the sequence of concepts with a sliding window of length 100,
and truncates it when the di�erence in scores between the �rst and last concepts
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in the window drops below 5% of the highest-scoring concept for the word.
This method gives somewhat reasonable results, but it only incorporates the

TFIDF data. Our method takes into account the structure of the text, and the
links in it. We think that a word's concept vector should only contain a concept
whose article contains that word as a keyword.

We experimented with keyword extraction: we performed some tests with
KEA [29], but it needs training data similar to the documents it will be used
on to extract keywords well. We came to the idea that in Wikipedia links are
only used on important phrases, so an arbitrary article and the anchor texts in
it as keyphrases can be used as training examples. We soon realized that this
way the usage of KEA can be left out altogether if the corpus we work with is
Wikipedia, as there are links in every article. Fortunately, Wikipedia articles
are very well structured texts. We consider a word to be a keyword, if it appears
in the lead section (the �rst section of the article, before the table of contents),
as part of a link's anchor text.

The concept vectors �ltered this way seem to contain much less irrelevant
concepts. A few anomalies, however, were detected. For example, the concept
vector of `house' �ltered this way still contains the (not relevant) article Spider-
Man's powers and equipment. This happened because the lead section
of the article contains the anchor text `common house spider'. This text was
tokenized, and every word-sense pair was used as a training example. Of course,
in this case, `house' has nothing to do with Spider-Man. Considering only the
one-word anchor text would discard a considerable percentage of the training
examples. Considering `common house spider' as a whole, we would not be able
to decide whether it is a training example for `common', `house', or `mouse'.
These experiences led us to design a new architecture. (Section 6.2.4)

6.2.4 The new architecture for senses

Based on the experiences described above, we have designed a new archi-
tecture using Wikipedia. The system we came up with incorporates knowledge
from the link structure of Wikipedia as well as from the texts of the articles.

First, we create a data structure of many sense-tagged words with contexts.
We treat the link structure of Wikipedia as a bipartite graph, where the edges
represent the links. The elements of one vertex set are labeled with the anchor
texts of the links. The elements of the other vertex set are labeled with the
target article of the links. These are the senses, or concepts in the terminology
of Wikipedia-based word sense disambiguation [45]. So one link can be thought
of as a sense-tagged example in a corpus. Our goal is to collect as many examples
as possible.

To achieve this goal, we build a data structure in two steps. The two steps
are marking the links to gather the examples, and gathering the examples.

In the �rst step, we mark all the links in the bipartite graph that can be
used for gathering examples for a given term (the method also works for phrases
that consist of multiple terms). First, we take all the links whose anchor text
is exactly the term (See Figure 6.11). These are obviously good sense-tagged
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examples. After that, we also mark all the links that point to some sense that
some already marked link also points to (See Figure 6.12). This way we will
mark all the links that have a common sense with some link whose anchor text
is exactly the term. These are good examples regardless of their anchor text,
because the anchor text is used in the same sense as the term we are collecting
examples for. The advantage of this method is that we gather much more correct
examples than with previous approaches.

In the second step, we gather the examples from the marked links. We see
each link as an example for the given term and the sense it points to. We collect
the contexts of the anchor texts of these links, and label them with the article
that contained the link (See Figure 6.13).

anchor texts

mouseMickey

concepts

computer mouse

Mickey Mouse computer mousecommon mouse

Figure 6.11: Marking the links for a term-concept data structure. The
dots in the bottom represent the anchor texts of the links. The target articles
of the links (i.e., the senses or concepts) are on the top. For example, three
links have the anchor text `mouse', one of which points to the sense Mickey
Mouse. For the term `mouse' (marked with red), we mark the links that have
the anchor text `mouse' (concepts marked with green).

The data structure is used to assign senses to terms in a text. We do this
by comparing the context of the term to the contexts assigned to the concepts.
We will have a weight for each sense, and we can construct a vector, a sense
vector, that consists of the senses and their weights. If there is one sense whose
weight is much larger than the weights of the other senses, then we can discard
the vector and keep that one sense as the sense of the term.

The weights of the sense vector can produced with a similarity measure (e.g.,
the cosine measure), or with a reconstruction network. In the solution with the
similarity measure, each context of a sense is compared with the context of
the term, and the results are aggregated to yield a weight for the sense. An
alternative (and faster) solution is to aggregate the contexts of the sense into
one context, and compare only this aggregated context with the context of the
term. In the other solution, the reconstruction network is used to �nd the best
linear combination of the senses and thus the best linear combination of the
aggregated contexts that reconstruct the context of the term.

The architecture has a number of advantages compared to our previous ap-
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anchor texts
mouseMickey

concepts

computer mouse

Mickey Mouse Mouse (computing)House mouse

Figure 6.12: Marking the links for a term-concept data structure. Con-
tinuing the marking the links to gather examples from (see Figure 6.11), we
mark all the links that point to some concept some already marked link also
points to (the concepts marked with green). For example, we collect the link
with anchor text `Mickey', because it points to a previously marked concept,
namely Mickey Mouse.

proaches. We expect it to resolve many of these problems we encountered. ESA
assigns an overly �ne-grained concept representation of a word. Senses that
links point to are much more sparse and more coarse. ESA assigns the same
vector to a word regardless its actual sense. Our system will perform disam-
biguation based on the contexts of links in Wikipedia. We used links as training
examples before, but the new architecture allows us to gather more. Finally,
the concepts we will assign to words will be more relevant than the ones ESA
assigns, because the links in Wikipedia denote keyphrases.

There are several ways to extend and improve the architecture:

• The weights of the words that appear in anchor texts, or in the title of
the article that contains the link can be enhanced in the BOWs.

• The contexts can be �ltered to only contain the words that are charac-
teristic to the term we want to disambiguate. This �ltering can be done
for example with document frequencies (i.e., only the words which appear
in only a few contexts are retained), or with RPCA (Robust Principal
Component Analysis).

• The number of learning examples can be improved by collecting all the
contexts for frequent monosemous anchor texts. For example, if the an-
chor text `computer mouse' links only to a single sense in the entire corpus,
Mouse (computing), then it can be assumed that the phrase is monose-
mous (i.e., it is always used in only one sense), and all the contexts can
be collected, which contain the phrase `computer mouse', even if it is not
a link (following [39]).

• The words in anchor texts and contexts can be extended with syntactic
and POS (part of speech) information.
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Mickey Mouse

Mouse (computing)

House mouse

Walt Disney

mouse

Word Concepts Contexts

Input device

Figure 6.13: The resulting term-concept data structure. The term-
concept data structure is created from the link structure seen in Figure 6.12. For
each term, concepts are assigned, and for each concept, contexts are assigned.
For example, the concept Mickey Mouse is assigned to the word `mouse' (be-
cause there is a link in Wikipedia which points to Mickey Mouse, and whose
anchor text contains `mouse'), and contexts of anchor texts from articles Walt
Disney and Cartoon are assigned to the concept Mickey Mouse (because
these links point to Mickey Mouse).

• Second-order features can be used during the comparison of the contexts:
instead of simply comparing the words in the BOWmodels of the contexts,
we can also examine the cooccurence statistics of its words. For example,
if the word `cop' occurs in one BOW, and `accident' occurs in the other,
then they can receive a similarity score if these words frequently appear
together with a third word (e.g., `tra�c': `tra�c cop' and `tra�c accident'
can be frequent collocations).

6.2.5 Additional possibilities

Principal component analysis is a method for dimension-reduction: it trans-
forms a number of variables into a smaller number of uncorrelated components.
The method is prone to errors, because it uses least squares estimation, which
can be in�uenced badly by only a small number of relatively large errors (i.e.,
outliers). Robust principal component analysis [63] is a new method which allevi-
ates this problem: it can recover a low rank matrix from corrupted observations.
The errors in the observations can be arbitrarily large, but are assumed to be
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sparse. We � and others � applied this method in computer vision. The results
were highly successful. This promising method can be of great use in computer
linguistics as well, but we have not yet managed to apply it in that area because
of memory problems. For example, the TFIDF matrices of ESA are very large.

Cyc is the world's largest and most complete general knowledge base and
commonsense reasoning engine. We downloaded and examined ResearchCyc,
which is a version of Cyc, aimed at the research community. The ontology
contains an incredible amount of common sense knowledge (like tree is a kind of
plant, and plants die eventually), and the inference engine is able to derive facts
using this knowledge (like trees die eventually). Some Cyc instances are mapped
to Wikipedia concepts and WordNet senses. This kind of general knowledge
can be of great use in word sense disambiguation [14], especially in a human-
computer dialogue system. For example, if the system is not sure about the
current sense of a particular word, it might use Cyc to construct questions to the
user which would disambiguate the word (`Is this mouse you are talking about an
animal?'). Using Cyc, however, would require a considerable amount of e�ort,
because it is a highly complex system, and many sources report di�culties using
it. [11]

6.3 Sparse coding to determine meaning

We de�ne the meaning of a words as a combination of word senses. The
problem of assigning this combination, or sense vector, to a word can be cast in
a framework that employs sparse representation.

We collect words tagged with senses from Wikipedia using our architecture
for interpreting text. One link in Wikipedia can be thought of as an example of
a term or phrase (the anchor text) tagged with a sense (the Wikipedia page the
link points to). We have a set of words that we want to interpret. For these set
of words, we gather all the links in Wikipedia in which they are anchor texts,
and store their context (e.g., the k words before and after them) in the columns
of a matrix D in Bag of Words representation.

When we encounter a word w we want to disambiguate, we can ask the fol-
lowing question: What contexts should be combined linearly to get the context
of w? (Fig. 6.14) We want to reconstruct the context of w from the linear com-
bination of the least amount of contexts possible. The vector α that contains
the coe�cients that belong to the contexts in D is the sense vector that belongs
to w. If the context of w is x in a Bag of Words representation, then this prob-
lem is the same as the one in topic learning, with the exception that here D is
given by the contexts gathered from Wikipedia; we do not learn the dictionary
(Fig. 6.15). We can solve this problem e�ciently.

There are several advantages of this framework. First, it assigns a vector
of meanings to a word instead of a single meaning. Second, it assigns meaning
across all senses at once. It detects if a word is exchanged with another word
based on the context. For example, if in the sentence `The bomb blew up' we
exchange the word bomb with e.g., vase, the sense vector will still point to the
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House mouse

Mouse (computing)

House mouse Mouse (computing)

Figure 6.14: Assigning sense vectors to words. The algorithm uses sense-
annotated contexts we mine from Wikipedia. When we encounter a new word,
we can assign a sense vector to it based on these contexts. The activities in
the vector represent the extent to which a the corresponding sense contributes
to the meaning of the word. See Fig 6.15 for a detailed explanation. This is a
hypothetical example.

meaning bomb 2. For the same reason, synonymy and polysemy is resolved. If
two words are synonymous, their context and so their vector of meanings will
be similar; the surface form of the word does not count. In the same way, if
there are two words with the same surface form, but di�erent meaning, their
vector of meanings will be completely di�erent.

6.4 Interpreting words

One of the most important questions in natural language processing, and in
our project is assigning meaning to words. The previous section shows how to
assign meaning to whole text fragments, and how to interpret words as a list
of sense-topics. Here we show how to make this interpretation more precise.
We assign a sense vector to a word given a list of senses. To solve this prob-
lem, we have extended the framework we developed in the previous semester
(Sec. 6.3). In the following, we introduce the extended framework, then two

2hypothetical example, in real cases more context might be needed
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Figure 6.15: The problem of interpreting text in the context of sparse
representations. We store contexts annotated with senses as the columns of
a matrix D. We assign a sense vector to a word w by reconstructing its context
as a linear combination of the columns of D. The vector alpha that contains
the coe�cients that belong to the contexts in D is the sense vector that belongs
to w. In the example, the word mouse belongs to the sense Mouse (computing).
Of the �ve coe�cients in alpha, the last three that belong to this sense will be
larger than the �rst two. This is a hypothetical example.

di�erent realizations of the framework, and the results.

6.4.1 A framework to determine the meaning of words

Word sense disambiguation is a well-studied, but still unsolved problem in
natural language processing. In WSD, we try to assign a sense to a word that we
know from a limited set of senses the word can be used in. The disambiguation
of di�erent words are disjunct problems. Two di�culties arise when we try to
apply this de�nition to real world problems. First, the meanings of words are
not disjunct. We are depriving ourselves from useful knowledge if we constrain
our problem to the surface form of one word. Training examples are generally
scarce, even in Wikipedia (Fig. 6.16). The second di�culty is that often the
surface form of the word is incorrect. From simple spelling errors to unknown
slang and deliberate word exchange, there are many reasons to suspect that
using the surface form of the word will lead to incorrect inference.

In the previous semester, we have outlined a framework that de�ned meaning
not as individual word senses, but as a combination of senses. In the sense
vector we assign to a word, the combination of its elements (senses) describe
the meaning. In addition, the element with the largest coe�cient is usually
the correct word sense according to the traditional Word Sense Disambiguation
problem. This property allows us to compare our algorithms to algorithms used
in Word Sense Disambiguation problems. We are using two linear multi-class
Support Vector Machines as baselines: one with a one-against-all strategy, and
one with a one-against-one strategy.
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Figure 6.16: A histogram of the number of training examples per sense
in Wikipedia. Only the articles with more than a hundred non-stopword words
were considered. It can be seen (especially from the logarithmic plot) that most
of the senses have few training examples.

The �rst advantage of this framework is that the combination of senses de-
scribes meaning more accurately than just a single sense. The second advantage
is that we can assign meaning to words we do not know. This is also possible in
Word Sense Disambiguation, but as we do not use the word, only its context,
the number of possible senses is larger than in WSD. If we assign a combination
of senses to a word, we can determine its meaning with less error than if we
assign a single sense out of hundreds, maybe thousands of potential candidates.

In every realization of the framework, we start with a matrix A ∈ Rm×n

whose columns are contexts mined from Wikipedia, labeled both with the word
they belong to and their sense. We have a context we want to assign meaning
to in y ∈ Rm. The sense vector consists of k di�erent senses that could be
obtained e.g., from sense-topic representation of the word. In the following, we
describe the generalized WSD problem, our dataset and feature selection, the
methods, and our results.

6.4.2 The generalized WSD problem and the data used in

the experiments

We test all the algorithms on the same experiments and the same data. To
be able to measure their e�ectiveness, we use a problem for which a labeled
dataset is available.

We have chosen to test the algorithms on a generalized Word Sense Dis-
ambiguation problem. In traditional WSD, we determine the sense in which a
word is used from a small set of senses. This set is di�erent for each word, so
the disambiguation problems of di�erent words are disjunct. There is usually a
separate classi�er built for each of the words that are to be disambiguated.

In contrast, we are testing on a generalized WSD problem, where the dis-
ambiguation of all the words is one problem. In fact, we do not use the surface
form of the word at all. We do not build a separate classi�er for each separate
word surface form; rather, we have one classi�er that decides the meaning of all
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the words. (Fig. 6.17)

Word Features Sense
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word 2
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sense 5

Training examples

(a) Training data

classifier for word 1
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classifier for word 2
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sense 3

sense 4

sense 5

?

?

(b) Traditional

universal classifier

sense 1
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sense 3

sense 4

sense 5

?

(c) Generalized

Figure 6.17: The traditional and the generalized WSD problem In tra-
ditional Word Sense Disambiguation, we have to determine the sense in which
a word is used from a small set of senses. This set is di�erent for each word, so
the disambiguation problems of di�erent words are disjunct. There is usually
a separate classi�er built for each of the words that are to be disambiguated.
In contrast, we are testing on a generalized WSD problem, the disambiguation
of all the words is one problem. In fact, we do not use the surface form of the
word at all. We do not build a separate classi�er for each separate word surface
form; rather, we have one classi�er that decides the meaning of all the words.

For this problem, the labeled dataset we use is Wikipedia. We consider the
words in the anchor texts semantically annotated. Their sense is the Wikipedia
article they link to.

Wikipedia is freely available to download3 in XML �les. We use a version of
the English Wikipedia from February 2010. The SAX parser4 is used to handle
the XML �le. Apache Lucene5 is used to index Wikipedia. Disambiguation
pages, and articles that are too small (have less than 200 non-stopwords in their
texts) or have less than 20 incoming and 20 outgoing links are not considered

3http://en.wikipedia.org/wiki/Wikipedia:Download
4http://www.saxproject.org/
5http://lucene.apache.org/java/docs/index.html
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in further steps. The Porter Stemming Algorithm6 is used for stemming.
To generate the data set, a number of semantically annotated terms are

selected randomly that match the following criteria:

• The term has to be a single word that is between 3 and 20 characters
long, consisting of the letters of the English alphabet. Hyphens are also
allowed.

• To discard very rare words and abbreviations, the word has to occur at
least once in WordNet and at least three times in the British National
Corpus7.

• The word has to be semantically annotated at least 100, at most 200 times.

• The word has to have at least 2, at most 20 di�erent senses (only those
senses are considered that the word has at least 2 annotations to).

The links with the resulting terms as anchor texts are extracted from
Wikipedia, together with their local contexts of k non-stopwords before and
k non-stopwords after the anchor text, where k is a parameter. Stopwords are
skipped, so exactly k words are collected in both directions (unless the beggining
or the end of the article is reached).

A bag of words representation of the contexts annotated by their sense is
placed into the columns of a matrix A. Aij is the number of times the jth word
appears in the ith context.

We have mined three datasets from Wikipedia. In each dataset, there are
precisely 50 examples for all the senses. In the �rst and the third dataset, there
are 37 senses, and there are 40 in the second (Table 6.3).

6.4.3 Feature selection

Feature selection is desirable for three reasons. First, there are many words
among the features that are not real words, but the result of spelling errors, etc.
Second, we can improve the accuracy of the algorithms if we can discard the
irrelevant features. Third, the time it takes to execute the algorithms decreases
as the number of features decreases.

We have examined two methods for feature selection. The �rst method
simply thresholds the words by their frequency. The less frequent words are dis-
carded. The second method is based on the popular TFIDF weighting scheme,
but instead of calculating the number of documents the sense appears in, we
calculate the number of senses. In the following, we take a look at the data
before feature selection, then we describe and analyze the two methods.

The datasets before feature selection

In this section, we examine the datasets DS1 and DS2 prior to any feature
selection. We take a look at two di�erent and important characteristics of these

6http://tartarus.org/~martin/PorterStemmer/
7http://www.natcorp.ox.ac.uk/
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dataset. Fig. 6.18,shows the distribution of how many senses a word belongs to
(i.e., appears in the context of an example that is labelled with the sense). The
less senses a word belongs to, the more it helps discriminate between senses. So
it is preferable to keep the words that belong to not too many senses.

Fig. 6.19 shows how many words the training examples for each of the senses
contain. The senses are on the horizontal axis, and the number of words that
appear in all the examples labeled with that sense are on the vertical axis.
Preferably, the number of words is not low for any sense. If, for example, there
would be no words in the columns of a sense, it would mean that its examples
are all zero, so we could tell nothing about it.
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(b) DS2

Figure 6.18: The datasets before feature selection The histogram shows
the distribution of how many senses a word belongs to (i.e., appears in the
context of an example that is labelled with the sense). For example, there are
approximately 12000 words that belong to only one sense in both datasets. The
less senses a word belongs to, the more it helps discriminate between senses.

Thresholding by term frequency

The �rst feature selection technique we review is also the simplest. We
simply take the sum of each row in the matrix A, and keep only the words
whose corresponding row sum is greater than a predetermined threshold. So we
threshold by the frequency of words: we discard every word whose frequency is
below the threshold. Fig. 6.20 shows the number of words that remain in the
dataset as the threshold grows from 0 to 100.

Fig. 6.21 shows the percentage of nonzero elements in the matrix A as the
threshold grows. The sparsity of the matrix can be reduced by thresholding.

Fig. 6.22 shows the distribution of how many senses a word belongs to (i.e.,
appears in the context of an example that is labelled with the sense). As we in-
crease the threshold, less and less words remain that could discriminate between
senses.

Fig. 6.23 shows how many words the examples for each of the senses contain.
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Figure 6.19: The datasets before feature selection The �gure shows how
many words the examples for each of the senses contain. The senses are on the
horizontal axis, and the number of words that appear in all the examples labeled
with that sense are on the vertical axis. Preferably, there number of words is
not low for any sense.

The number of words (features) do not decrease signi�cantly for any of the senses
as the threshold grows.

In conclusion, we can see that there is no di�erence between how the two
datasets respond to thresholding. Thresholding by term frequency allows us
to reduce the sparsity of the matrix, but it does not keep the most important
words for classi�cation.
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Figure 6.20: Thresholding by term frequency The �gure shows the number
of words that remain in the dataset as the threshold grows from 0 to 100. The
threshold is on the horizontal axis, and the number of words is on the vertical
axis.
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Figure 6.21: Thresholding by term frequency The �gure shows the percent-
age of nonzero elements in the matrix A as the threshold grows. The threshold
is on the horizontal axis, and the percentage of nonzero elements is on the ver-
tical axis. It can be seen that the sparsity of the matrix can be reduced by
thresholding.

Term Frequency Inverse Sense Frequency

The second feature selection technique is also based on thresholding, but we
generate a new A matrix that contains Term Frequency Inverse Sense Frequency
(TFISF) values instead of Term Frequency values. The input of the algorithms
is also this new matrix.

TFISF is based on TFIDF. The motivation of TFIDF is that the less docu-
ments a word appears in, the more it can be used to distinguish that document.
So besides the frequency of the word in the document, the inverse of its docu-
ment frequency is also important.

For senses, the motivation is that the less senses a word belongs to (i.e.,
appears in the context of an example that is labelled with the sense), the more
discriminative it is for those senses. So we compute the TFISF score as follows.

TFISFij = Aij ∗ log2
k

si
(6.2)

where k is the total number of senses, and si is the number of senses whose
training examples the ith word appears in.

As the results were practically identical for DS1 and DS2, from here on we
only analyze DS1.

Fig. 6.24 shows the number of words that remain in the dataset as the
threshold grows from 0 to 100.

Fig. 6.25 shows the percentage of nonzero elements in the matrix A as the
threshold grows. The sparsity of the matrix can not be reduced as well as by
thresholding by term frequency.

Fig. 6.26 shows the distribution of how many senses a word belongs to (i.e.,
appears in the context of an example that is labelled with the sense). As we

159



0 5 10 15 20 25 30 35 40
0

2000

4000

6000

8000

10000

12000

(a) t = 1, DS1

0 5 10 15 20 25 30 35 40 45
0

2000

4000

6000

8000

10000

12000

(b) t = 1, DS2

0 5 10 15 20 25 30 35 40
0

500

1000

1500

(c) t = 3, DS1

0 5 10 15 20 25 30 35 40 45
0

200

400

600

800

1000

1200

1400

(d) t = 3, DS2

0 5 10 15 20 25 30 35 40
0

100

200

300

400

500

600

(e) t = 5, DS1

0 5 10 15 20 25 30 35 40 45
0

100

200

300

400

500

600

(f) t = 5, DS2

0 5 10 15 20 25 30 35 40
0

50

100

150

200

250

(g) t = 10, DS1

0 5 10 15 20 25 30 35 40 45
0

50

100

150

200

250

(h) t = 10,
DS2

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

(i) t = 30, DS1

0 5 10 15 20 25 30 35 40 45
0

10

20

30

40

50

60

70

(j) t = 30, DS2

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

(k) t = 50, DS1

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30

35

40

45

(l) t = 50, DS2

Figure 6.22: Thresholding by term frequency The histogram shows the
distribution of how many senses a word belongs to (i.e., appears in the context
of an example that is labelled with the sense). The threshold is denoted by t. It
can be seen that as we increase the threshold, less and less words remain that
could discriminate between senses.

increase the threshold, the discriminating words remain thanks to Inverse Sense
Frequency.

Fig. 6.27 shows how many words the examples for each of the senses contain.
The number of words (features) do not decrease signi�cantly for any of the senses
as the threshold grows.

In conclusion, TFISF keeps the more discriminating features, but does not
reduce sparsity as well as thresholding by term frequency.
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Figure 6.23: Thresholding by term frequency The �gure shows how many
words the examples for each of the senses contain. The senses are on the hor-
izontal axis, and the number of words that appear in all the examples labeled
with that sense are on the vertical axis. The threshold is denoted by t. The num-
ber of words do not decrease signi�cantly for any of the senses as the threshold
grows.
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Figure 6.24: Thresholding by TFISF The �gure shows the number of words
that remain in the dataset as the threshold grows from 0 to 100. The threshold
is on the horizontal axis, and the number of words is on the vertical axis.
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word examples senses correct precision
BOW ESA BOW ESA

promise 2012 19 959 964 0.477 0.479
band 1325 24 991 988 0.748 0.746

accident 1233 8 907 876 0.736 0.710
behaviour 993 3 953 953 0.960 0.960
shake 962 30 508 457 0.528 0.475
giant 658 14 282 321 0.429 0.488
shirt 532 9 343 303 0.645 0.570

generous 510 6 129 117 0.423 0.382
brilliant 442 13 206 196 0.466 0.443
knee 434 23 241 241 0.555 0.555
slight 384 8 347 327 0.904 0.852
modest 373 9 232 229 0.622 0.614
wooden 361 5 344 344 0.952 0.953
amaze 315 2 224 208 0.711 0.660
bother 293 12 162 162 0.552 0.553
seize 291 14 124 119 0.426 0.409
sack 285 10 184 182 0.646 0.639
�oat 282 26 59 67 0.209 0.236
bury 271 12 103 97 0.380 0.358
derive 258 7 101 107 0.391 0.415
excess 250 9 124 127 0.496 0.508

calculate 248 7 179 179 0.722 0.722
bet 165 17 60 54 0.364 0.327
bitter 143 11 43 51 0.301 0.357

sanction 95 15 53 52 0.558 0.547
consume 66 7 32 25 0.485 0.379
scrap 56 11 31 27 0.554 0.482
invade 53 8 21 21 0.396 0.396
onion 25 2 23 23 0.920 0.920

Table 6.2: Results of kNN-based word sense disambiguation on the test dataset
of the SENSEVAL-1 English lexical sample task, with k=25, and with the con-
text radius of 7. The ESA-based results show no improvement over the BOW-
based ones. The mean accuracies were: 0.608 (BOW) versus 0.596 (ESA).

Dataset name Senses Examples per sense Width of context
DS1 37 50 50
DS2 40 50 50
DS3 37 50 500

Table 6.3: The data sets used
There are three di�erent datasets. DS1 and DS2 are very similar, but contain
di�erent senses. DS3 is the same as DS1, but the context is ten times as wide.
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Figure 6.25: Thresholding by TFISF The �gure shows the percentage of
nonzero elements in the matrix A as the threshold grows. The threshold is on
the horizontal axis, and the percentage of nonzero elements is on the vertical
axis. It can be seen that the sparsity of the matrix can not be reduced as well
as by thresholding by term frequency.
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Figure 6.26: Thresholding by TFISF The histogram shows the distribution
of how many senses a word belongs to (i.e., appears in the context of an example
that is labelled with the sense). The threshold is denoted by t. It can be seen
that as we increase the threshold, the discriminating words remain thanks to
Inverse Sense Frequency.
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Figure 6.27: Thresholding by TFISF The �gure shows how many words the
examples for each of the senses contain. The senses are on the horizontal axis,
and the number of words that appear in all the examples labeled with that sense
are on the vertical axis. The threshold is denoted by t. The number of words
do not decrease signi�cantly for any of the senses as the threshold grows.
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6.4.4 Subspace Pursuit with Nearest Subspace

This algorithm is based on the Sparse Recognition and Classi�cation [64]
algorithm that was very successfully applied to face recognition. The algorithm
consists of two steps. In the �rst step, we use Subspace Pursuit [15] to solve the
following problem:

min ||x||1 subject to Ax = y (6.3)

In the language of compressed sensing, y ∈ Rm is the measurement via the
sampling matrix A ∈ Rm×n, and we want to recover the unknown sparse signal
x ∈ Rn. In the language of natural language processing, y is a context, and
the problem is to determine the meaning of this context. The columns of A
contain contexts labeled with the sense they belong to. Our question is the
following: What contexts (i.e., columns of A) should be combined linearly to
get the context y? We try to achieve

y = x1A1 + x2A2 + . . .+ xnAn (6.4)

with as few nonzero coe�cients in x as possible. The sparsity constraint enforces
that we obtain the context y from the linear combination of the least amount
of contexts possible.

In the second step, we obtain the sense vector s based on how well the
coe�cients in x assiciated with each sense reproduce y. So, for example, s1 is
obtained by setting all the coe�cients in x not associated with the �rst sense
to zero, then computing ||y − Ax||2. If we let δi : Rn → Rn be a characteristic
function that selects the coe�cients of the ith sense, then

si = ||y −Aδi(x)||2 (6.5)

Algorithm 4 (Subspace Pursuit with Nearest Subspace)

1: Input: A matrix of contexts A = [A1, A2, ..., An] ∈ Rm×n with each column
labeled with one of k senses, and a context y ∈ Rm to be interpreted.

2: Solve the following l1 minimalization problem with Subspace Pursuit

min ||x||1 subject to Ax = y (6.6)

3: for i = 1, 2, . . ., k do
4: si = ||y −Aδi(x)||2
5: end for
6: Output: The sense vector s.

6.4.5 Robust Principal Component Analysis based sense

vector generation

This algorithm is based on Robust Principal Component Analysis (Sec. 6.4.7.
In RPCA, we decompose A into two components A = L+ S, where L has low-
rank and the sparse S contains the outliers.
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The main idea of the algorithm is that if we put the training examples of
sense i into the columns of a matrix M together with a test example of the
same sense, and we run the RPCA algorithm on M = L + S, then L will
contain more of the energy of the text example than if we would put into M
the training examples of sense i and a test example that belongs to a di�erent
sense. (Fig. 6.28) We can also say that less energy is absorbed from the test
example. The reason is that when the test and training examples belong to the
same sense, they are more correlated, so less of the test example is an outlier
for RPCA.
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Figure 6.28: RPCA based sense vector generation Both of the sub�gures
show the M matrix. In the �rst case, the sense of the training examples are
the same as the sense of the test example. In the second case, their senses are
di�erent. So, after running RPCA on both matrices, L will contain more energy
of the test example in the �rst case.

In general, the more similar the senses of the training examples and the test
example are in meaning, the more the energy that goes into L. Let δi : Rm×n →
Rm× ni select the columns of the matrix A that contain the contexts of the ith
sense. Then the ith coordinate of the sense vector is computed as follows.

First, we determine the matrix M.

M = [δi(A) y] (6.7)

Then, we decompose this matrix into a low-rank L and a sparse S component
using RPCA.

min ∥L∥∗ + λ∥S∥1 subject to M = L+ S (6.8)

The ith component of s equals the energy of y that S contains. If l is the index
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of the last column of M (i.e., the column that contains y), then

si = ||Ll||2 (6.9)

As an alternative method, we can also view the amount of energy that goes into
S. In that case, the more similar the sense are, the less the energy in S.

Algorithm 5 (Robust Principal Component Analysis based sense vec-
tor generation)

1: Input: A matrix of contexts A = [A1, A2, ..., An] ∈ Rm×n with each column
labeled with one of k senses, and a context y ∈ Rm to be interpreted.

2: for i = 1, 2, . . ., k do
3: M = [δi(A) y]
4: Solve the following minimalization problem

min ∥L∥∗ + λ∥S∥1 subject to M = L+ S (6.10)

5: si = ||Ll||2
6: end for
7: Output: The sense vector s.

6.4.6 Results

We compare the accuracy of our methods and the baselines on the generalized
WSD problem, using dataset DS1 and DS3. The sense assigned to each word
is the sense with the largest coe�cient in the sense vector. In the Subspace
Pursuit with Nearest Subspace algorithm, we set K to 10.

As baselines, we use two linear multi-class Support Vector Machines. Sup-
port vector machines are inherently binary classi�ers. To deal with multi-class
problems (when there are M di�erent classes), there are multiple approaches to
combine multiple binary classi�ers into a single multi-class one.

The one-against-all method combinesM binary classi�ers, one for each class.
Every classi�er decides one class and the rest of the classes. The outputs of the
classi�ers are then combined using a winner takes all strategy.

In the one-against-one method, a binary classi�er is trained for each pair
of classes. That means training M(M − 1)/2 binary classi�ers, so the number
of classi�ers is higher than in the one-against-all method, but the number of
training examples is much lower in each classi�er, which yields a better training
performance. For a test example, the binary classi�ers �vote� for a class. We
use the libsvm [10] library.

Table 6.4 compares Subspace Pursuit with Nearest Subspace with the base-
lines. The one-against-all SVM has generally poor performance. When we
threshold by word frequency, the one-against-one SVM approach is slightly su-
perior to SPNS. When the matrix contains TFISF values, SPNS outperforms
all the other methods at the low and middle thresholds. At the high thresholds,
the number of features are signi�cantly reduced.
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Feature selection SPNS SVM-oaa SVM-oao

no thresholding 76% 65% 78%
word frequency, threshold = 3 73% 65% 78%
word frequency, threshold = 10 76% 65% 76%
word frequency, threshold = 50 68% 65% 68%
t�sf, threshold = 0 81% 57% 76%
t�sf, threshold = 6 81% 57% 78%
t�sf, threshold = 9 81% 59% 78%
t�sf, threshold = 20 70% 59% 76%
t�sf, threshold = 50 65% 62% 75%

Table 6.4: The results on the DS1 dataset The three algorithms we com-
pare are Subspace Pursuit with Nearest Subspace (SPNS), Support Vector Ma-
chine: one-against-all (SVM-oaa), and Support Vector Machine: one-against-
one (SVM-oao). The one-against-all SVM has generally poor performance.
When we threshold by word frequency, the one-against-one SVM approach is
slightly superior to SPNS. When the matrix contains TFISF values, SPNS out-
performs all the other methods at the low and middle thresholds. At the high
thresholds, the number of features are signi�cantly reduced.

We have introduced the DS3 database speci�cally to test the accuracy of
RPCA based sense vector generation, as it performs better with matrices that
are more dense. Here we only threshold the matrix by word frequency, as
thresholding by t�sf does not reduce the sparsity as well (see �gures 6.21 and
6.25).

Method Accuracy
RPCA based 1. 75%
RPCA based 2. 75%
RPCA based 3. 75%
RPCA based 4. 81%
RPCA based 5. 78%
SVM-oaa 65%
SVM-oao 75%

Table 6.5: RPCA based sense vector generation on the DS3 dataset
The RPCA-based methods are numbered according to the enumeration above.
The RPCA-based methods outperform the other two methods.

After many experiments, we have chosen our threshold to be 10. Choosing
a lower threshold makes the matrix more sparse, and higher thresholds discard
too much information. We are testing �ve di�erent versions of the algorithm. λ
was set to 0.1.

1. We choose the sense with the smallest ||St||2 value.

2. We choose the sense with the largest ||Lt||2 value.
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3. We use all the ||St||2 values as features in the one-against-one Support
Vector Machine.

4. We use all the ||Lt||2 values as features in the one-against-one Support
Vector Machine.

5. We use both the ||St||2 and the ||Lt||2 values as features in the Support
Vector Machine.

where t is the index of the test example in the matrix M = L + S, L denotes
the low-rank matrix, and S the outlier matrix.

Table 6.5 shows that the RPCA-based methods outperform the other two
methods.

6.4.7 Robust Principal Subspace Analysis

Robust Principal Component Analysis

The original formulation of the Robust Principal Component Analysis
(RPCA) is as follows [8]:

Suppose we are given a large data matrix M , and know that it may be
decomposed as

M = L0 + S0,

where L0 has low-rank and S0 is sparse; here, both components are of arbitrary
magnitude. We do not know the low-dimensional column and row space of L0,
not even their dimension. Similarly, we do not know the locations of the nonzero
entries of S0, not even how many there are. Can we hope to recover the low-rank
and sparse components both accurately (perhaps even exactly) and e�ciently?

The intriguing answer is yes, although at �rst sight, the separation problem
seems impossible to solve since the number of unknowns to infer for L0 and S0

is twice as many as the given measurements in M ∈ Rn1×n2 . Furthermore, it
seems even more daunting that we expect to reliably obtain the low-rank matrix
L0 with errors in S0 of arbitrarily large magnitude.

The augmented Lagrange multiplier (ALM) method operates on the aug-
mented Lagrangian

l(L, S, Y ) = ∥L∥∗ + λ∥S∥1+ < Y,M − L− S > +
µ

2
∥M − L− S∥2F (6.11)

A generic Lagrange multiplier algorithm would solve Principal Component Pur-
suit (PCP) by repeatedly setting (Lk, Sk) = argminL,S l(L, S, Yk), and then
updating the Lagrange multiplier matrix via Yk+1 = Yk + µ(M − Lk − Sk).

For our low-rank and sparse decomposition problem, we can avoid having
to solve a sequence of convex programs by recognizing that minL l(L, S, Y ) and
minS l(L, S, Y ) both have very simple and e�cient solutions. Let Sτ : R → R
denote the shrinkage operator Sτ [x] = sgnsgn(x)max(|x| − τ, 0), and extend it
to matrices by applying it to each element. It is easy to show that

argmin
S

l(L, S, Y ) = Sλµ(M − L+ µ−1Y ). (6.12)
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Similarly, for matrices X, let Dτ (X) denote the singular value thresholding
operator given by Dτ (X) = USτ (Σ)V ∗, where X = UΣV ∗ is any singular value
decomposition. It is not di�cult to show that

argmin
L

l(L, S, Y ) = Dµ(M − S − µ−1Y ). (6.13)

Thus, a more practical strategy is to �rst minimize l with respect to L (�xing
S), then minimize l with respect to S (�xing L), and then �nally update the
Lagrange multiplier matrix Y based on the residual M −L−S, a strategy that
is summarized as Algorithm 6 below.

Algorithm 6 (Principal Component Pursuit by Alternating Direc-
tions)

1: initialize: S0 = Y0 = 0, µ > 0.
2: while not converged do
3: compute Lk+1 = Dµ(M − Sk − µ−1Yk);
4: compute Sk+1 = Sλµ(M − Lk+1 + µ−1Yk);
5: compute Yk+1 = Yk + µ(M − Lk+1 − Sk+1);
6: end while
7: output: L, S.

Upgrading RPCA to an online algorithm: the Robust Principal Sub-
space Analysis

We can not use RPCA for our huge databases. Known single pass PCA
methods could be used here, but for our case an easier method is su�cient,
because we do not need the order of the principal components. Instead, we need
only the subspace of RPCA and to �lter out the outliers from that subspace.
This is big di�erence. For example, if the database changes and the magnitudes
of the singular values of the nth and mth principal components exchanges, then
re-computation of PCA becomes necessary. On the other hand, the principal
subspace remains the same. This also means that the complexity of the pursuit
is less. Online learning rules exists for Principal Subspace Analysis [50] and
its robust version (RPSA) provides the same results as RPCA according to our
numerical experiments.

The RPCA and RPSA method separates the typical (L) and the out-
lier/sparse (S) part of the data. The typical part can be �lled in even in
case if a large portion of the information is missing. The main advantage of
RPCA/RPSA is that they sparsify the coordinates of the dictionary without
thresholding. Thresholding would spoil dictionary elements as one can easily
see it for overcomplete wavelet dictionaries.
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Chapter 7

Progress in scaling up the

project

7.1 Design of a new architecture

In this semester, we have worked out the details of our project. We generate
novelties in three phases (Fig. 7.1). First, we collect and store topical content
from all over the internet. This task is solved by our crawler system developed in
the previous semester. Then we retrieve a number of candidate text fragments
to work on with our deep techniques. This second step requires e�cient data
storage and retrieval capabilities, for millions of documents. In the third step,
we use our deep techniques to generate novelties.

We have created a new software architecture to integrate these steps based on
Lucene, the open source informational retrieval software, and Nutch, the open
source crawler based on Lucene (see the Appendix for details on software). For
the �rst step, the crawled pages are parsed and then stored in a data structure
(an extended inverted index) that retains and makes queriable all the informa-
tion generated (e.g., terms, dependency relations, part of speech, senses). In
the second step, we query this data structure using the capabilities of Lucene
to get the candidate text fragments we want.

In the third step, cascades are generated using the link database that stores
the incoming links for each document. The architecture also helps the work
with senses by storing and retrieving the training examples for word sense dis-
ambiguation, and by storing the senses of disambiguated words to make retrieval
based on senses possible.

The structure of this section re�ects the three main steps described above.
Each step was given its own subsection.
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Figure 7.1: The process of novelty generationWe generate novelties in three
phases. First, we collect and store topical content from Blogspace. Then we
retrieve a number of candidate text fragments based on novelty templates. In the
third step, we use our deep techniques on the candidate documents to generate
novelties. Novelty templates are generated based on information cascades (See
Sec. 7.1.3). The process of question answering is very similar, except that the
question is used to retrieve candidate text fragments, and the deep techniques
are di�erent (see results in the previous semester).

7.1.1 Storing information

We collect lots of information in the form of HTML documents from the
WWW. In addition, as we parse these documents, various kinds of additional
data are generated (e.g., part-of-speech, dependency relations, word senses) that
needs to be stored. We have designed a data structure that makes storing and
retrieving this data e�cient.

172



The data structure

We have realized a data structure based on the inverted index (Sec. 7.1.2) of
Lucene that integrates all our data structures used previously (e.g., dependency
graphs, part-of-speech tagged text, raw text, sensegraphs, cascades, etc). These
previous data structures are now stored in our combined data structure.

The basic unit we store and index is the document. We build a corpus where
each document is indexed. The various data (described above) are stored for
each term in each document.

The quick brown fox jumps over the lazy dog .

1 2 3 4 5 6 7 8 9 10

Figure 7.2: Data structure - the raw text The text of the document supple-
mented with the position of each term. In the example, the document consists
of only one sentence.

We describe the structure of a document step-by-step: we start with raw
(tokenized) text, and add the new layers of information one-by-one. Fig. 7.2
shows the text supplemented with the position of each term. On Fig. 7.3, we
added the part-of-speech tag to each term. Lucene allows us to do this by
attaching so-called payloads to each term. The payloads can be used in queries.
For example, we can collect all the documents where the word fox is a noun.

On Fig. 7.4 dependency relations have been added to each sentence. In
dependency parsing, each dependent has only one head, so we simply store the
head of each term, and the type of the dependency relation. In our example,
there is a dependency relation between the head word fox (on position 4) and
the dependent word The (on position 1) of the type determiner. We store this
relation by adding the pair (4, determiner) to the word The (on position 1).
The root of the dependency tree has no head.

On the next �gure, Fig. 7.5, the sentence boundaries are marked, so we can
query sentences (e.g., for question answering). Paragraphs and sections can also
be marked and used as contexts.

Fig. 7.6 contains also senses of words from manually tagged corpora (i.e.,
training examples for word sense disambiguation). This allows us to handle
word sense disambiguation in the same context we handle the other tasks, and
to integrate various knowledge sources (e.g., Wikipedia, the corpus downloaded
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DT

The quick brown fox jumps over the lazy dog .

JJ JJ NN VBD IN DT JJ NN .

1 2 3 4 5 6 7 8 9 10

Figure 7.3: Data structure - with POS tags The part-of-speech tag of each
term is also stored and indexed.

DT

The quick brown fox jumps over the lazy dog .

JJ JJ NN VBD IN DT JJ NN .

1 2 3 4 5 6 7 8 9 10

Figure 7.4: Data structure - with dependency relations In addition to the
POS tags, dependency relations have been added to each sentence.

from the WWW). In the example, the senses are from Wikipedia, as in [45]. In
general, di�erent sense inventories can be used, for example, another document
can be annotated with WordNet senses. The contexts of the various senses of
a word (e.g., for using them as training examples) can be easily collected by
queries.

Lucene allows us to store several terms at the same term position in the
index. We use this feature to assign senses to every term. Where we have man-
ually tagged sense, we only duplicate it (i.e., store it also in the term position
besides as payload). For the rest of the terms, we can obtain senses by automat-
ically disambiguating using word sense disambiguation (Fig. 7.7. This allows us
to use senses instead of words in our algorithms without modi�cations.

Cascades are stored in the link database of Nutch. Incoming links and
hostnames are stored for each document. Identifying cascades is easy based on
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DT

The quick brown fox jumps over the lazy dog .

JJ JJ NN VBD IN DT JJ NN .

1 2 3 4 5 6 7 8 9 10

Figure 7.5: Data structure - boundaries Sentence boundaries are marked,
so the whole sentence that contains the queried terms can be retrieved.

DT

The quick brown fox jumps over the lazy dog .

JJ JJ NN VBD IN DT JJ NN .

1 2 3 4 5 6 7 8 9 10

Fox Laziness

Figure 7.6: Data structure - manually tagged senses Senses from manually
tagged corpora are stored for each term where available.

this information. For details, see the next section.

7.1.2 Retrieving text fragments

The �rst step in our three step process is retrieving some candidate text
fragments to work on with deeper, slower methods (e.g., graph kernels). Fast
information retrieval is made possible by indexing the corpus.

Indexing and querying a corpus

Here we describe the indexing and querying of a corpus using an information
retrieval system in general.

To avoid parsing through the whole corpus each time a query is invoked, an
index must be created. An index is a data structure which enables quick lookup
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DT

The quick brown fox jumps over the lazy dog .

JJ JJ NN VBD IN DT JJ NN .

1 2 3 4 5 6 7 8 9 10

Fox Laziness

Fox Laziness Dog

Figure 7.7: Data structure - senses The senses of each term (manually tagged
or automatically disambiguated) are stored in the index, so we can query senses
instead of terms.

of content.
Indexing a corpus has multiple phases. The �rst of these is text extraction,

the extraction of terms from a document. It starts with parsing and tokenizing
the document, recovering the individual words of it. All formatting and punctu-
ation are discarded. Usually, indexing all terms is unnecessary: words like `the'
or `and' do not relate to the topic of the document. A stopword list contains
the list of words we do not want to index altogether.

Most languages have multiple morphological variants of the same word,
which are closely related (e.g., `�shing', `�shed', `�sh' etc.). A stemmer is usu-
ally used to strip the in�ectional su�xes from all words, to bring these variants
of the words to the same form. Note that this step does not necessarily produce
real words (e.g., it is considered to be acceptable if the words `house', `houses'
and `housing' are brought to the form `hous'), as the result of text extraction
is not directly shown to the user. Another way to improve the quality and per-
formance of the index to impose a minimum term frequency restriction, i.e., to
skip over terms that appear in a document fewer times than speci�ed.

The relevant terms of documents are indexed in a way which promotes the
fast retrieval of the documents that belong to these terms. Most information
retrieval systems use a so-called inverted index (Fig. 7.8). It is called like that,
because instead of storing each word to a document (which is essentially the
document itself), they store each document to a term. It is a table of terms,
which maps from them to the documents they occur in. To support phrase or
proximity searching, the notion of inverted index can be extended to store the
positions for each occurrence of the term as well.

Using an information retrieval system involves the formulating of queries.
The system processes these queries, and provides the results in some way. The
queries are usually described in a formal language, and can be single words to
search for, as well as complex queries using search for phrases (where the spec-
i�ed terms have to appear in consecutive order) or proximity search (where the
terms have to appear in close linear distance to each other). Some informa-
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Term Document:position

Figure 7.8: The inverted index An inverted index maps terms to documents
they occur in. It makes retrieving documents that contain speci�c terms ef-
�cient. On the �gure, we index three documents. There is a list of docu-
ment:position pairs for each term. For example, if we would like to retrieve all
the documents that contain the term "mice", we would only have to look up
the term "mice" in the inverted index, and return the �rst two documents.

tion retrieval systems provide additional support for excluding documents with
speci�c properties (such as date).

The results of information retrieval are the documents in the corpus. They
are presented to the user sorted by their supposed relevance. A trivial way to
estimate relevance is to take the term frequency in the document into account.
This can be re�ned in a number of ways.

Retrieval for various tasks

Now, after introducing indexing and retrieval in general, we show how the
di�erent aspects of the project are using information retrieval. All of these
applications make use of the inverted index that allows us to quickly retrieve
the documents where some word, phrase, word sense, etc. occurs.
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Dependency graphs and SenseGraphs

We can produce dependency graphs or SenseGraphs of sentences, para-
graphs, sections or whole documents in very little time. We simply choose
the part of the text we want to create the graph from, and construct the graph
from the individual parsed sentences. We iterate over all sentences, and add
the stored dependency relations as edges to the graph. In SenseGraphs, we add
senses instead of words to the graph as nodes.

Question answering and analogy detection

Question answering and analogy detection are both two-step processes.
First, we collect a number of text fragments (e.g., sentences, paragraphs, or
whole documents) using fast information retrieval techniques. Then we process
these smaller text fragment collections using slower, deeper techniques (e.g.,
graph kernels). A huge improvement over the previous, hierarchical system
(i.e., the one we designed in the previous semester) is that we can retrieve the
sentences directly, that is, we do not have to work hierarchically.

The task of question answering and retrieving documents that satisfy an
analogy are very similar. In question answering, we query sentences that may
contain candidate answers. Finding documents that satisfy an analogy involves
�nding text fragments that are similar to the representation of the analogy
(Sec. 7.1.3). Because we have to retrieve text fragments similar to another text
fragment in both tasks, we can discuss them together.

We can retrieve text fragments based on words, senses, part-of-speech
tags, dependency relations, or any combination of these. All of this in-
formation is useful to reduce ambiguity. For example, if the question is
Who cast the sword in the film?, knowing the sense, the part-of-speech, or
the dependency relation of the word cast can all serve to disambiguate the
query. Without these, querying a �lm database would return casts of �lms,
instead of �lms in which weapons were cast.

Phrases can be queried using Lucene SpanQueries. For example, if we
want to �nd the phrase little house, we can query house following little,
with little within 2 positions of house. So the query returns, for example,
little white house in addition to little house. These queries can be com-
bined, so more complex queries can be created like little house, but without
green, or little house followed by build.

Cascades

As the incoming links and hostnames are stored for each document, identi-
fying cascades is easy and fast. An additional possibility is extending the link
database with `missing' links. If two documents are very similar, but there is
no link between them, then information has spread from one to the other, but
without identifying the source. We add a new edge to the graph of information
spreading between these similar documents. This is feasible because we can
retrieve documents that are similar to a document quickly.
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Word Sense Disambiguation

The data structure also helps word sense disambiguation. Collecting training
examples for a word or a speci�c sense of a word is done by querying the corpus.
Queries can take into account the part-of-speech, the dependency relation, the
document title, etc. These can all be used for word sense disambiguation. For
example, we can take into account the part-of-speech of a word. Some words can
be disambiguated based on that information alone. The data structure detailed
in Sec. 6.2.4 can be built on a word-by-word basis.

Two new possibilities that arise here are the following. First, we can �nd
links to wikipedia pages in non-wikipedia documents. If we �nd such a link,
we can consider the anchor text disambiguated. Second, we can increase the
number of our training examples as detailed in Sec. 6.2.4, but for the whole
corpus. We �nd all the anchor texts which link to only one Wikipedia page
(i.e., they are monosemous), and then collect contexts of these anchor texts
from the non-wikipedia corpus as well.

7.1.3 Processing information - cascades

Cascades are currently used for two purposes. For measuring the spreading
of information, we have to monitor a number of blogs. We use algorithms based
on submodularity that take the information cascades as input to select these
blogs. On the other hand, we also use cascades to collect analogies. In this
semester, we have worked on both tasks.

Experiment with cascades based on page content

In the last semester, we have experimented with information cascades based
on the work of Leskovec et. al. [41]. Leskovec has taken granted that if a
blog post links to another post, then information has spread between the two
posts. We would like to test this assumption by measuring the similarity of the
posts with a link between them, and then thresholding the graph of information
spreading (i.e., removing all the edges where the similarity between two posts
is less than the threshold) before running the algorithm of Leskovec et. al.

This way we will obtain information cascades where information has cer-
tainly spread between the blog posts in the cascade. If we do not perform this
thresholding, it may be the case that the two blogs are linked only because, for
example, one has a link on its menu bar to the other.

In this semester, we have performed a large crawl to collect blog posts and
the link structure for this experiment. We have performed the experiment on
smaller data sets. However, we were not able to run it for the whole, large
data set, due to technical di�culties (memory problems). We will resolve these
problems in the following semester, and describe the results in our next report.
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Finding analogies

For creating blog posts that spread, we combine di�erent blog posts if similar
information has been combined in the past, and has been successful (i.e., spread
widely). The success of the information (blog post) can be approximated by the
size of its information cascade.

Creating new information by combining existing information is more di�-
cult. We do this by �nding analogies: we �nd blog posts that were combined
from di�erent blog posts, and create our blog post in an analog fashion. So an
analogy is basically a pattern that allows us to combine blog posts. We also use
the term novelty template for analogy, because novelties are generated based on
these patterns.

original posts

combined post

Figure 7.9: Combining blog posts A subset of a cascade where information
has spread from the original posts and was combined in the combined post. We
can �nd these subsets, and detect analogies.

One way to �nd such analogies is to look for them in the graph of informa-
tion spreading (i.e., in the cascades). If, in this graph, information has spread
from several di�erent posts (called the original posts) into a single post (called
the combined post), it is likely the case that the single post has been created
by juxtaposing information from the original posts. We can detect this, and
characterize analogies based on these patterns (Fig. 7.9).

In general, we want to identify for each original post the part it has spread
to in the combined post. One solution is to take the original posts one-by-one,
and look for the parts of the combined post that are similar to parts of the
original post. For example, a simple detection mechanism would be to compare
the Bag of Words representation of the original post with the combined post,
and work with the words that appear in both. But it is hard to decide what is
important in the intersection of the two Bag of Words': there will be reasonably
common words that are nonetheless not important.

Additional information can be used to determine only the parts that are
similar in the two posts because of information spreading. We can assume that
sentences are the unit of information spreading, not mere words. So we want to
�nd the sentences in two documents that are similar. As sentences are usually
not taken from other posts verbatim, we have to account for changes in wording.
This can be done with our graph kernel based sentence comparison methods that
were developed in the previous semester.

180



The exact algorithm is the following. As inputs, we have several original
documents, and one combined document. We want to determine the information
that was spread from each original document to the combined document. So we
take the original documents one-by-one, and create a bipartite graph, where the
two independent vertex sets are the sentences of each document. We select for
each sentence of the combined document all the sentences that are more similar
to it in the original document than a predetermined threshold. This way, if
several sentences were combined, they can be found.

After we have the text fragments that were spread from each of the original
documents, we can retrieve similar text fragments and combine them to create
novelties.

7.2 Development

7.2.1 Scaling up the project

Gathering data

In the previous semester, we had problems while collecting data from the
Web using our crawler. The crawler we based our system on, Heritrix, was
not capable of collecting more than approx. 120 gigabytes of data. At
that point, it ran out of memory because of memory management issues,
so it stopped. Because of this, we had planned to update the base of our
crawler to Heritrix 3.0, an other branch of the software (https://webarchive.
jira.com/wiki/display/Heritrix/Release+Notes+-+3.0.0). This change
involved considerable amount of work that we did half way. Fortunately, the
other half could be saved since then a new version came out from the branch
we are using (Heritrix 1.14.4, https://webarchive.jira.com/wiki/display/
Heritrix/Release+Notes+-+1.14.4) that solved this problem.1

We have updated the software to be based on Heritrix 1.14.4. Since then we
could collect as many as approx. 250 gigabytes of data without problems (the
crawl was stopped because we did not need more data).

Accessing and storing documents

In the previous semester, we have designed an architecture to store and access
our documents e�ciently. In the past, we have stored documents as separate
�les in the �le system. This method became more and more inconvenient: as
the number of documents grew, the feasibility of the studies were at risk given
the speed limitations. We decided to store the �les in some kind of database.
The best solution was an information retrieval system as it solves not only the
storing problem, but it alleviates the document accessing task in various ways by

1Quote from the new version: �A number of performance, memory-retention, and deadlock-
risk issues occasionally a�ecting the implementation class CachedBdbMap were identi�ed.
Fixes have been applied, but also the class has been replaced with a more simple implemen-
tation focused speci�cally on Heritrix's common use cases, ObjectIdentityBdbCache.�
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means of the inverted index (Fig. 7.10). For example, we can collect instances
of a word easily by querying that word. This is useful e.g., when collecting
training examples for word sense disambiguation.

Term Document:position

Figure 7.10: The inverted index An inverted index maps terms to docu-
ments they occur in. It makes retrieving documents that contain speci�c terms
e�cient. On the �gure, we index three documents. There is a list of docu-
ment:position pairs for each term. For example, if we would like to retrieve all
the documents that contain the term "mice", we would only have to look up
the term "mice" in the inverted index, and return the �rst two documents.

The other advantage of an information retrieval system is that additional
data (e.g., the result of dependency parsing or Part-of-Speech tagging) can be
also stored and accessed e�ciently. Currently, we do not store this data because
of the improved parsing speed makes this unnecessary, but the capability is there
when we need it.

In this semester, we have implemented the software based on Lucene, an
open-source information retrieval system (http://lucene.apache.org/) and
based our tools on it. In the last semester, we also planned to include Nutch
(http://nutch.apache.org/), but after some period of development, we de-
cided against it, because of a number of problems we had to face and that we
needed lower level access to the internal workings of Lucene; e.g., we needed
term vectors.
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Parsing documents

One signi�cant bottleneck in scaling up the project was the parsing speed of
our dependency parser, MaltParser. It could parse approx. 1 sentence per sec-
ond, which is way too low for our purposes. There are many dependency parsers
besides MaltParser, so we decided to gather as many open-source dependency
parsers as we can, and tested their parsing speed. In the end, we found that
DeSR (http://desr.sourceforge.net/) is one of the fastest parsers. DeSR is
capable of parsing roughly 200 sentences per second on our computer (Core2Duo
2 GHz).

Meanwhile, a new version of MaltParser was made available that uses LI-
BLINEAR [16] (http://www.csie.ntu.edu.tw/~cjlin/liblinear/), a very
fast classi�er we use also in our own crawling system. We tested this version
of MaltParser, and obtained comparable results for its speed as that of DeSR.
Because MaltParser is written in Java, and we have already interfaced it to
our software, we chosen to stay with it but upgraded it to the latest version.
This new version of MaltParser is fast enough so we can parse documents on
the �y when it is needed. We no longer need to parse beforehand, and store the
parsed data for later retrieval.

7.2.2 Architecture for mining Wikipedia as a sense-

annotated corpus

In the previous semester, we have designed an architecture to help interpret
the meaning of texts. In this semester, we have implemented this architecture.
It uses Lucene to index and retrieve articles and links of Wikipedia. The main
advantage of the software is that handling of this very large dataset became
easy and e�cient. For example, we can harvest training examples for word
sense disambiguation very quickly across the whole Wikipedia.

Information retrieval software

We have developed an information retrieval software for Wikipedia. It is
based on the Apache Lucene library. It indexes and searches the individual
words and links. Searches with complex queries can be performed in seconds.
This software is essential to our future experiments on Wikipedia; now we do
not have to to read through the whole database each time we want to retrieve
data from it. That would take many hours.

Processing the link structure of Wikipedia is not a trivial task. The articles
are identi�ed by their title, but titles can be written in a couple of di�erent
forms. For example, it does not matter if the �rst character is in upper or lower
case: the titles computer and Computer refer to the same article, because
the �rst letter is automatically converted to upper case (note that the cases
of the other letters do matter, e.g., Red meat and Red Meat are di�erent
article titles: the former is a type of meat, the latter is a comic strip). Another
example: the individual words in the title can either be separated by spaces or
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underscores, the result is the same.
The task of handling links is also troubled by special pages called redirects.

These articles send the reader to another article, usually from an alternative
title2. For example, the page UK is a redirect page. It does not have a con-
tent; instead, it contains a single link to the article United Kingdom. When
browsing Wikipedia online, clicking to a link that is pointing to UK takes the
reader to United Kingdom instantly.

This example raises another problem for us: the anchor text UK and the an-
chor text United Kingdom look the same from the point of view of Wikipedia,
but seem to be di�erent according to our experiences: such links (another ex-
ample is CD and Compact Disk) might belong to di�erent topics, where their
contexts di�er. Di�erences may arise from the descriptions provided for disk
experts as opposed to music fans and it can confuse disambiguation unless we
can distinguish between topics.

Indexing software

Figure 7.11: Our software creates a Lucene index from an XML �le.

The indexing process works on the Wikipedia XML dump, which is an XML-
�le that contains all the articles of the English Wikipedia. Such dumps can be
downloaded freely3. The indexing process consists of three runs, and includes
the following steps:

1. During the �rst run redirects are extracted, to be stored in a hash table
for the following steps of the process. As the English Wikipedia contains
more than 3 million redirects, storing this hash table requires a consider-
able amount of computer memory. This step is necessary because a quite
large portion of links in Wikipedia point to redirects, and the preliminary
resolution of such redirects simpli�es and speeds up searches.

2. During the second run, for each article, the number of inward links are
counted (this information is not stored explicitly in the XML, it can be
obtained only by counting the individual links). This data is stored, and
later added to the resulting index, to enable the user to search only among
those articles which have the speci�ed number of links pointing to them.
This is used to discard unimportant data.

2http://en.wikipedia.org/wiki/Wikipedia:Redirects
3http://en.wikipedia.org/wiki/Wikipedia:Database_download
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3. The �nal run performs the actual indexing. For each article, the text of
the article is extracted. Formatting characters and tags (e.g., apostro-
phes indicating emphasis, <ref> and </ref> tags indicating references)
are dropped. The remaining text is then tokenized, indexed and stored.
Links are also extracted, redirects and di�erent spellings of the same sense
(e.g., Developing_country and developing country � notice the
di�erent capitalization and spacing) are resolved. Links are also indexed
and stored. For each article, the following data is also stored and indexed:
the number of inward links, the number of outward links, the number of
words, and whether the page is a disambiguation page (these are pages
that simply enumerate the di�erent senses that belong to an ambiguous
term � and thus do not contain enough meaningful text that could be used
as a training example for word sense disambiguation).

The resulting index can be used to perform complex searches very fast. For
example, �nding all non-disambiguation articles that are at least 200 words long,
have at least 5 inward links, and contain a link to Mouse (computing) takes
less than a second. More complex searches (such as �nding second-order links
� see later) require more queries, but even these can usually be performed in a
minute.

Architecture for interpreting text

Following is a description of the system we have implemented. It incorpo-
rates knowledge from the link structure of Wikipedia and from the texts of the
articles.

First, we create a data structure of many sense-tagged words with contexts.
We treat the link structure of Wikipedia as a bipartite graph, where the edges
represent the links. The elements of one vertex set are labeled with the anchor
texts of the links. The elements of the other vertex set are labeled with the
target article of the links. These are the senses, or concepts in the terminology
of Wikipedia-based word sense disambiguation [22]. One link can be thought of
as a sense-tagged example in a corpus. Our goal is to collect as many examples
as possible.

To achieve this goal, we build a data structure in two steps: marking the
links to gather the examples, and gathering the examples.

In the �rst step, we mark all the links in the bipartite graph that can be
used for gathering examples for a given term (the method also works for phrases
that consist of multiple terms). First, we take all the links whose anchor text is
exactly the term (See Figure 7.12). We call these �rst-order links with respect
to the term. These are obviously good sense-tagged examples. After that, we
also mark all the links that point to some sense that some already marked link
also points to (See Figure 7.13). We call these second-order links with respect
to the original term, because we can only retrieve these on the basis of the �rst-
order links. This way we will mark all the links that have a common sense with
some link whose anchor text is exactly the term. We conjecture that these are
good examples regardless of their anchor text, because the anchor text is used

185



in the same sense as the term we are collecting examples for. The advantage of
this method is that we gather much more correct examples than with previous
approaches.

anchor texts

mouseMickey

concepts

computer mouse

Mickey Mouse computer mousecommon mouse

Figure 7.12: Marking the �rst-order links for a term-concept data
structure. The dots in the bottom represent the anchor texts of the links.
The target articles of the links (i.e., the senses or concepts) are on the top. For
example, three links have the anchor text `mouse', one of which points to the
sense Mickey Mouse. For the term `mouse' (marked with red), we mark the
links that have the anchor text `mouse' (concepts marked with green).

anchor texts
mouseMickey

concepts

computer mouse

Mickey Mouse Mouse (computing)House mouse

Figure 7.13: Marking the second-order links for a term-concept data
structure. Continuing the marking the links to gather examples from (see
Figure 7.12), we mark all the links that point to some concept some already
marked link also points to (the concepts marked with green). For example,
we collect the link with anchor text `Mickey', because it points to a previously
marked concept, namely Mickey Mouse.

In the second step, we gather the examples from the marked links. We see
each link as an example for the given term and the sense it points to. We collect
the contexts of the anchor texts of these links, and label them with the article
that contained the link (See Figure 7.14).

The architecture has a number of advantages compared to our previous ap-
proaches. We expect it to resolve many of the problems we encountered. Explicit
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Mickey Mouse

Mouse (computing)

House mouse

Walt Disney

mouse

Word Concepts Contexts

Input device

Figure 7.14: The resulting term-concept data structure. The term-
concept data structure is created from the link structure seen in Figure 7.13. For
each term, concepts are assigned, and for each concept, contexts are assigned.
For example, the concept Mickey Mouse is assigned to the word `mouse' (be-
cause there is a link in Wikipedia which points to Mickey Mouse, and whose
anchor text contains `mouse'), and contexts of anchor texts from articles Walt
Disney and Cartoon are assigned to the concept Mickey Mouse (because
these links point to Mickey Mouse).

Semantic Analysis [21] assigns an overly �ne-grained concept representation of
a word. Senses that links point to are much more sparse and more coarse. ESA
assigns the same vector to a word regardless its actual sense. Our system will
perform disambiguation based on the contexts of links in Wikipedia. We used
links as training examples before, but the new architecture allows us to gather
more. Finally, the concepts we will assign to words will be more relevant than
the ones ESA assigns, because the links in Wikipedia denote keyphrases.

Results so far

We have conducted some experiments using the software. Our methodology
was the following:

1. We chose ambiguous words randomly from Wikipedia. We found that the
most interesting and hardest cases are the ones where there is a relatively
few training examples, so most of the tests were done using only words
that occurred relatively rarely (at most in 200 di�erent articles) as links.
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2. For each selected word, we collected all the links whose anchor texts con-
sisted of that single word. We used every link as a training example: we
created a feature-vector from each of these links.

3. For each selected word, we built a classi�er, and performed cross-validation
on the feature-vectors belonging to that word, trying to classify the senses
of the current training examples. For the classi�cation, we used linear
support vector machines, as implemented in the Java version of the LIB-
LINEAR machine-learning library, because it proved to be fast and e�ec-
tive.

We experimented using various features. For the �rst experiment, we used
Bag of Words representations as features by simply using the number of times
the words appeared in the feature vector. We soon realized that we get better
results if we use TF-IDF measure instead the simple frequencies.

We performed POS-tagging on the articles using the Stanford POS-tagger,
and we used the POS-tag of the anchor text, the POS-tags of the surrounding
words, the �rst nouns before and after the anchor, and the �rst verbs before and
after the anchor as features in the examples. We used a bag of words of the four
words left and the four words right of the anchor text (excluding stop words),
and another Bag of Words of the at most �ve most frequent non stop-words
occurring at least three times in the paragraph of the anchor text.

Using the features mentioned above, we measured 75.42% macro-averaged
accuracy during a 5-fold cross validation repeated 5 times, on 100 randomly
selected ambiguous words that occurred at least in 20, at most in 200 di�erent
articles.

We could improve our results to 86.80% macro-averaged accuracy on the
same words by introducing the following features: a Bag of Words of the 100
non stop words to the left, and 100 non stop words to the right of the anchor,
and another bag of words from all of the non stop words of the article that
contains the link. This experiment indicates that the hierarchical structure
of the feature-vector, using both narrower and wider contexts of the word is
bene�cial.

We also run the experiment on the 30 ambiguous nouns that were used in [45].
The author reached 84.65% on these words by mapping each Wikipedia-sense
to a WordNet sense, and performing cross-validation on the resulting examples.
Note that this mapping makes the task easier, because it reduces the number of
senses. For example, the articles Christian Church and Catholic Church
were both mapped to the WordNet sense {church, Christian church}. Since
each Wikipedia-sense was mapped to exactly one WordNet sense, the number
of senses could only be decreased.

We did not perform this mapping, mainly because it requires human work,
and we want a fully automatic system. On the same ambiguous nouns, we
reached 83.31%, which (despite the harder task) is very close to the results
described in [45]. This is possible because of two reasons:

1. we used better features, which gather information from the whole article,
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not just one paragraph

2. we had more than twice as many links, because since 2007, the Wikipedia
grew bigger.

Note that the aforementioned experiments were run only on the �rst-order
links of the anchor. Anchor texts of second-order links (i.e., the links that point
to the same articles as the �rst-order links, but with di�erent anchor texts)
correspond to the same sense of the original anchor texts, so these second order
anchor texts are additional examples with additional contexts. Therefore, one
can use both �rst-order and second-order links in the training phase.

Measuring the accuracy of a classi�er, which is trained on both �rst-order
and second-order links gave surprising results. We found that there are cases
when these extra training examples improve the results considerably, but some-
times the second-order links ruin the accuracy of the classi�er. We need to
investigate this issue further to see if in di�erent topics the same meaning is
used in di�erent ways and contexts. These di�erences would distort the classi-
�er.

Based on the topics learnt by our matrix factorization method, disambigua-
tion �ltered by topic may be possible. We plan to investigate this possibility
further.

7.2.3 Extracting text

In the previous semesters, we have processed HTML �les only to the extent
required for the support vector machine in our crawler. We had to exclude most
of the HTML tags, javascript, menu items, but we did not have to retain the
order of the words, the complete sentences, etc., as we were working with a
Bag of Words representation. This is not su�cient for many tasks, for example,
parsing.

In this semester, we have developed a system to handle extraction of textual
content from HTML �les. Our �rst goal was �exibility: di�erent tasks require
di�erent processing. For example, there are some applications where the com-
ments on the page of a blog are important, in other applications they must be
discarded. The system consists of independent �ltering modules that can be
combined in any way.

The processing of a HTML �le consists of three steps. In the �rst step, we
utilize Apache TIKA (http://tika.apache.org/) to separate the text from the
non-textual content (e.g., HTML tags, javascript, etc.). In the second step, we
process this text and generate a list of paragraphs. In the third step, the �lters
are run on this list.

The �lters are run sequentially, the input of one �lter is the output of the
previous �lter. Any number of �lters can be combined this way to achieve the
desired operation.

The �lters can be used in `discard mode', or in `non-discard mode'. In
discard mode, the paragraphs that are �ltered out are removed from the list of
paragraphs. In non-discard mode, only the content of the paragraphs is deleted,
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the empty paragraph remains in the list. This is useful for example, when using
the ConnectedTextFilter.

Here are the �lters and the reasoning behind their utilization:

• CommentFilter : Discards all paragraphs after a short paragraph that con-
tains the substring omment. The letter `c' is omitted intentionally as a
simple way of ensuring case-insensivity in the �rst letter. There are many
pages where the comments are introduced by new lines and the word
comment(s).

• ConnectedTextFilter : Discards the paragraphs without at least one non-
empty paragraph above or below them. On many pages, the content of the
page consists of blocks of paragraphs. If a paragraph has no non-empty
neighbor paragraphs, it is probably an advertisement, menu item, or com-
ment. This �lter can also be used to discard one-paragraph comments,
but retain comments with more than one paragraphs (that are more likely
to contain useful information).

• MostParagraphsTextFilter : Selects the longest connected section (i.e., that
contains the most paragraphs). The longest connected section (i.e., the
most consecutive paragraphs on a page) is most likely to be the main
article on the page.

• NumberOfCharactersFilter : Removes all the paragraphs with less than
threshold characters. Very short paragraphs are usually menu items or
advertisements.

• NumberOfLettersFilter : The same as above, but only letters count. This
helps �lter out longer textual elements that have very few letters (e.g.,
separators).

• NumberOfNewlinesFilter : This �lter discards all paragraphs where the
number of new lines exceeds a threshold. In paragraphs that contains e.g.,
advertisements, there are often many new lines. In a paragraph containing
real content, there are usually only a few.

• ParagraphFilter : A base abstract class. Does not do any �ltering, but
o�ers an extension point for new �lters.

• PostedByFilter : Discards all paragraphs after a short paragraph that con-
tains the substring osted by. The letter `p' is omitted intentionally as a
simple way of ensuring case-insensivity in the �rst letter. On blogs, there
is usually a short paragraphs that contains posted by closing each article.

• ProportionOfLinkedCharactersFilter : This �lter discards all the para-
graphs where the majority of the content is linked. Most of the text
of advertisements, menu items and sidebar items are linked.
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• PunctuationFilter : A basic �lter that removes all the paragraphs that do
not contain any punctuation (".", "!", or "?"). Many menu items and
advertisements do not contain punctuation.

7.2.4 Attached software

We have attached three software components to this report:

1. The architecture for mining Wikipedia can be downloaded from http:

//nipg.inf.elte.hu/USAF/WikiRetrieval.zip.

2. Our updated topical crawler can be found at http://nipg.inf.elte.hu/
USAF/Crawler.zip. This software is also necessary for the third compo-
nent to work.

3. The software that we used to conduct the experiments for detecting the
most in�uential blogs based on document content can be found at http:
//nipg.inf.elte.hu/USAF/CELF.zip. This component also contains the
module that indexes the webpages downloaded by our crawler. Requires
the second component to work.
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